Showing posts with label single-ended voltage. Show all posts
Showing posts with label single-ended voltage. Show all posts

Selecting Single-ended vs. Differential Voltage Measurement for Process Measurement - Part 2 of 2

programmable logic controller with input and output devices for process control
Selecting the proper signal conditioning equipment
is essential to maintaining process operation
This second part of a two part series of white papers provides discussion of the differences in function of differential and single-ended voltage measurement for industrial process measurement and control. Part One focused primarily on single-ended voltage measurement, how it differs from differential, and in what application context it can be best applied. This white paper, provided below, delves into differential voltage measurement and how it may be advantageous, even necessary, in a range of application scenarios.

The papers are produced by Acromag, Inc., a globally recognized manufacturer of signal conditioning equipment. Information about Acromag's extensive product offering is available from M.S. Jacobs & Associates, as well as technical details and application assistance.



Selecting Single-ended vs. Differential Voltage Measurement for Process Measurement - Part 1 of 2

DIN rail mounted process measurement signal conditioning module
Acromag manufactures an extensive array
of signal conditioning modules
Process control requires process measurement. The industry provides a enormous array of measuring devices for almost every conceivable process parameter. Selecting the right signal conditioner that will convert a current process state into a signal to be transmitted to and utilized by a controller can be challenging. One area of confusion centers around whether to use differential or single-ended voltage measurement.

Acromag, Inc., a globally recognized manufacturer of signal conditioning equipment for industrial process measurement and control, has provided a white paper that helps sort out reasons behind a beneficial selection of single-ended or differential voltage measurement devices. Explanation of how each functions and tips on selection criteria for an application are also provided. The technicality of the language is at a level that is comprehensible to most, but retains that exciting engineering edge for the purists among us. The first part of two (Part Two), provided below, focuses mostly on single-ended measurement. Part two covers differential.

Top flight assistance with your process measurement and control application challenges is available from M.S. Jacobs & Associates.