Introduction to Rotameters

rotameter
Rotameter
(courtesy of
King Instrument)
A rotameter is one particular type of variable area flowmeter that measures flow by varying the cross-sectional area a fluid or gas travels through in a closed tube.

Advantages
  • Requires no external power.
  • Is a simple device that can be easily manufactured out of inexpensive materials.
  • Linear scale.
  • The clear glass tube is resistant to thermal shock and chemical reaction.
Disadvantages
  • Must be mounted vertically, with designated top and bottom, and with the fluid flowing from bottom to top.
  • Graduations on a given rotameter are only accurate for a given substance at a given temperature. Separate rotameters must be used for fluids with different densities and viscosities, or multiple scales on the same rotameter must be used.
  • Resolution is relatively poor and gets worse near the bottom of the scale.
  • Oscillations of the float and parallax lend to reduced accuracy.
  • Difficult to automate - primarily a manual / visual device



For more information on rotameters, contact:

M.S. Jacobs and Associates, Inc.
810 Noblestown Road
Pittsburgh, Pa 15205
Toll free: 800 348 0089
Fax: 412-279-4810
Email: msjacobs@msjacobs.com
www.msjacobs.com

Basics of Infrared Flame Detection

flame detector
Triple IR flame detector
(courtesy if Sierra Monitor)
A flame detector is a specialized sensor used to detect and respond to the presence of a flame, and accordingly notify an operator, sound an alarm, close a fuel supply valve, shut down a pump, and turn on a fire suppression system. 

Flame detectors are fast acting and accurate, much more so than smoke or heat detectors because of the technology they employ. Some flame detectors can detect fires up to 215 feet away and be accurate enough to detect a 1 sq. foot gasoline pan at 215 feet in less than 5 seconds. 

One popular type of flame detection technology used is measuring infrared (IR) light coming from a source. This type of sensor monitors the infrared light spectrum for very specific patterns given off by hot gases. These hot gases are sensed by a specialized fire-fighting thermal imaging (thermographic) camera. 

One method of determining if a fire exists is by looking for the infrared peak of hot carbon dioxide (approximately 4.4 micrometers). Response times of a typical IR detector is 3–5 seconds. 

There is the possibility, however, of false alarms caused by background thermal radiation and other hot surfaces in the area. Another potential concern is with the formation of condensate on the flame detector's lens, which can greatly reduce its accuracy. Direct exposure to sunlight for these types of detectors can also be problematic. 

An approach to overcome these issues is with dual or triple IR sensors, which compare the threshold signal in two or three infrared ranges. Often one sensor looks at the 4.4 micrometer carbon dioxide (CO2) emission, while the other sensors looks at additional reference frequencies. Modern flame detector design allow users to select different sensitivity levels to ensure no other detectors cross-over detection zones. 

Additional important features to be considered are heated windows to eliminate condensation and icing, HART and Modbus capabilities for digital communications, low excitation power, and compact design. 

When selecting a flame detector for any application, it is important to make sure it is approved and certified for that specific use. Check for third party agency approval including FM, ATEX, IECEx, TUV, and CSA. These approvals and certifications assure the highest quality of products and performance.

Finally, the proper application of flame detectors is critical in many applications for the safety and protection of property and personnel. Therefore, it is always suggested that your application be discussed with a qualified application engineer