New Non-Contact Radar Level Transmitter From Magnetrol

non contact radar level transmitter
New Pulsar R86
Non-contact radar level
transmitter
Courtesy Magnetrol
The determination of level in tanks or other vessels is a lifeblood operation in fluid processing. A number of technologies are available that provide workable solutions for a designated range of uses. Selecting the most appropriate measurement technology for an application can entail consideration of how several goals are achieved.

Accuracy - Differing applications will place their own importance on the degree of accuracy needed. Some operations, depending upon the value of the material, safety impact of over or under filling, and other operation specific factors, will benefit from higher levels of accuracy. Matching the instrument accuracy to the needs of the operation can often save first cost and widen the field of prospective instruments to be considered.

Reliability - Reliability has two facets. Of course, any operation benefits from an instrument that starts working and keeps working. The challenge is to evaluate how the instrument works and compare that to how the process works. Does the process expose the instrument to conditions that may impair its function or shorten its useful life? The second facet concerns the degree of confidence that the operator can place on the level reading delivered by the instrument. Will the readings be accurate under all reasonably probable operating conditions? Are there process conditions which may generate a false level reading? The ability of the measurement technology and the instrument to consistently deliver information that can be used for decision making is paramount.

Low maintenance burden - Maintenance is still largely accomplished by people, a limited resource in any operation. An instrument that requires less technician time to maintain proper operation brings a benefit to the operation.

There can certainly be other factors to consider for any application, but a systematic weighing of those many factors can result in making a solid decision that delivers a positive outcome.

Magnetrol, globally recognized innovator in level measurement technology, has released its Pulsar R86 non-contact level transmitter for industrial process control use. The new instrument combines the company's many years of innovation in the level measurement field into a single transmitter. The unit has applications throughout almost every industry, with a powerful array of operating features.

A product datasheet is included below, so you can learn more about the Pulsar R86. Share and discuss your level measurement requirements and challenges with process measurement specialists. Combining your own process knowledge and experience with their product application expertise will produce an effective solution.


In-Line Process Refractometer




Refractometry, a combination of physics, materials, and chemistry, is a measurement technique which determines the composition of known substances by means of calculating their respective refractive indexes (RI). RIs are evaluated via a refractometer, a device which measures the curve, or refraction, resulting when the wavelength of light moves from the air into and through a tested substance. The unitless number given by the refractometer, usually between 1.3000 and 1.7000, is the refractive index. The composition of the substance is then determined with a comparison of the measured RI to standard curves developed for the substance. There are four general types of refractometers: digital, analog, lab, and inline process. Although refractometry can measure a variety of substances, the most common group of known substances to calculate is liquids. Liquid based continuous processes benefit from the use of an inline process refractometer to provide real time data about process output or intermediate steps.

The ultimate focus of industrial refractometry is to describe what is in a final product or output of a process step. A field which relies directly on the results of refractometry is gemology. Gemological refractometry is crucial for accurately identifying the gemstones being classified, whether the gemstones are opaque, transparent, or translucent.

Other common examples of industrial refractometry uses include measuring the salinity of water to determine drinkability; figuring beverage ratios of sugar content versus other sweeteners or water; setting eye-glass prescriptions; understanding the hydrocarbon content of motor fuels; totaling plasma protein in blood samples; and quantifying the concentration of maple syrup. Regarding fuels, refractometry scrutinizes the possible output of energy and conductivity, and for drug-testing purposes, refractometry measures the specific gravity, or the density, of human urine. Regarding food, refractometry has the ability to measure the glucose in fruit during the fermentation process. Because of this, those in food processing can know when fruit is at peak ripeness and, in turn, also understand the most advantageous point in the fruit’s lifetime to put it on the market.

The determination of the substance composition of the product examples listed above all speak to the purpose of quality control and the upholding of standardized guidelines. Consumers rely on manufacturers not only to produce these products safely and in vast quantity, but to deliver the customer a consistent taste experience when the product is consumed. Brand marketing success relies on maintaining the standards for the composition of substances that comprise the product. One could argue that an in-line process refractometer is actually a marketing tool of some sort, at least to the extent that it is employed to maintain consistent product quality.

Equipment manufacturers have developed numerous refractometer configurations tailored to specific use and application. Each has a set of features making it the advantageous choice for its intended application. Product specialists can be invaluable sources of information and assistance to potential refractometer users seeking to match the best equipment to their application or process.

Ultrasonic Clamp-On Flowmeter with SIL 2 Rating

clamp on ultrasonic flowmeter with control unit SIL 2 rating
FLUXUS F/G70X and F/G80X series meters
Courtesy Flexim
Measuring the flow quantity of gases and liquids is a common industrial processing task. There are numerous technologies available for measuring fluid flow, each with its own set of advantages and drawbacks for any particular application. Some of the technologies and methods have been in use for a very long time, with recent enhancements provided by electronics or smart sensor designs.

Ultrasonic flow measurement devices employ a comparatively recent technology to measure gaseous or liquid flow. Whether the transit time differential or Doppler method is utilized, ultrasonic flow meters have a distinctive characteristic in that they can be deployed in a form factor that does not require insertion into the fluid. A common installation method is to clamp the ultrasonic transducer assembly onto the exterior of a pipe. This makes the technology attractive for applications that involve adding a flow measurement point to an existing piping system.

Flexim, a globally recognized leader in ultrasonic flow measurement, offers a number of permanent and portable units for measuring liquid and gaseous flow rates. Some of their instruments have been certified as SIL 2 capable, along with a host of other third party certifications. The product range includes simple and accurate instruments designed for general industrial use, and extends to multi-beam units intended for applications, such as custody transfer of fluids, that require the highest accuracy and overall performance levels.

Share your flow measurement challenges and requirements with instrumentation specialists, combining your own process knowledge and experience with their product application expertise to develop effective solutions.


Inline Refractometers Used in Commercial Food and Beverage Production

in-line process refractometer with control housing
Hygienic process in-line refractometer
with control unit and flow cell
Courtesy Flexim
Refractometry is a measuring technique that evaluates the impact of fluid media on light. There are some variants of the basic technology, but essentially it relies upon the media affecting a change in the way in which light waves propagate through a sample. This refraction caused by the sample can be compared to a known standard and information about the sample can be deduced.

Refractometry is a useful measuring method for many liquid processing operations. It is used for concentration and density analysis of process liquids. Portable sample processing units are available, but high volume continuous flow operations benefit from the use of in-line refractometers that do not require manual sampling and handling of process liquids. The measurements are produced in real time to continuously verify the fluid quality characteristics.

Food and beverage manufacturers use refractometry to determine the concentration of sugar, ethanol, ascorbic acid, pectin, artificial sweeteners and other components in their products. Close control of component concentration is a necessary part of delivering a consistent taste in finished products. Large investments are made to establish brand name products, and delivery of a consistent customer experience each time a product is consumed is key to developing and growing a brand. This is a solid example of a marketing based application of science and technology to industrial processing.

In-line refractometers for food and beverage applications will have specific features and construction to make them suitable for hygienic processing. The avoidance of contamination is first and foremost a requirement. Additionally, design features that reduce maintenance requirements and retain the needed measuring accuracy through extended periods of usage add value to the unit and should be a consideration when selecting an in-line refractometer.

Share your in-line refractometry applications and challenges with product specialists, combining your process experience and knowledge with their product application expertise to develop effective solutions.


Simplex vs. Duplex Strainers For Industrial Liquid Processing

duplex basket strainer
Duplex basket strainer, shown with one basket removed
Courtesy Eaton Friltration
Many industrial and commercial liquid systems have mechanical components that cannot tolerate particulate matter in the liquid. Pumps, valves, sensors, and other specialties can experience accelerated wear and tear due to certain types and sizes of particulate matter.

Good practice dictates that the tolerance of the system for particulate matter should be determined and a properly sized and configured device be put in place to remove particulates larger than greatest allowable size. Considerations for connection size and type, construction material suitability for the process media, flow rate, pressure drop, and filter holding capacity should all be a part of the product selection criteria.

simplex basket strainer with basket removed
Simplex basket strainer with access cover and basket removed
Courtesy Eaton Filtration
One key element of the selection criteria is whether the system can be temporarily shut down for replacement or cleaning of the filtration element. A basket strainer, one of several types of liquid filtration devices, is available in both simplex and duplex variants. A simplex basket strainer functions as a single unit, requiring flow stoppage when the basket becomes clogged with debris. The changeover time may not be long, but some processes cannot tolerate any downtime. A duplex strainer is comprised of two simplex strainers, incorporated into a common housing, with an inlet chamber and diverting valve that selects which strainer basket will process the liquid flow. Changes in pressure drop through the device can be used to signal when it is time to switch operation between the strainer baskets.

Fluid filtration can be an important part of keeping a process in operation, reducing wear and tear on piping system components and equipment. Share your process fluid filtration challenges and requirements with application specialists, combining your process knowledge and experience with their product application expertise to produce effective solutions.