Tuesday, May 31, 2016

Multivariable Flow Meter Provides Pressure, Temperature, Flow Measurements

Multi-Variable Flowmeter
AX Series
Courtesy Azbil N.A.
M.S. Jacobs includes the Azbil North America line of process measurement and control products in its offering. One of Azbil's flagship products is the AX series of multivariable vortex flowmeters for industrial process measurement and control. The instrument combines temperature, pressure and velocity measurement in a single instrument to provide accurate mass flow measurement of gases, liquids and steam.

When compared to arrangements with discrete instruments for each variable, incorporating several variable measurements into a single package reduces potential leakage points, installation complexity, and space requirements . Configurations for in-line or insertion installation are available for line sizes ranging from ½” to 8” for in-line and 2” and greater for insertion. A sizing guide, application and product configuration assistance is available from the product specialists at MS Jacobs.

Friday, May 27, 2016

Positive Returns From Steam Generation and Condensate Recovery Efficiency Gain

Two gas fired boilers in a boiler room
Steam systems are excellent candidates for cost saving
through increased efficiency.
The generation of steam is a lifeblood operation to many commercial and industrial operations around the world. The large scale of its use can make steam generation one of the largest energy consumption activities for an industrial plant or commercial building. The size and complexity of steam systems, with generation, condensate handling, heat recovery, and feedwater treatment, provides a number of areas where inefficiencies can cost very substantial sums of money. Conversely, enhancing efficiency toward a maximum attainable level will yield very large savings in operating costs.

Magnetrol International, a globally recognized leader in the design and production of flow and level controls for commercial and industrial use, has produced a video summarizing the elements of the steam system that are good candidates for upgrade, as well as general direction on how to achieve increased efficiency for each. In keeping with the company's line of level and flow measurement products, the focus is on how accurate and robust instrumentation can improve overall system performance and generate a decidedly positive return on the time and funds invested.

Invest a few minutes in the video below and learn how the operating efficiency of your steam system can be elevated with an instrument upgrade. There is a white paper on the same subject available on request. You can also receive a listing of the specific Magnetrol instruments that can be applied to steam systems, with a short description of where each is applied. Reach out to a product application specialist and share your steam system challenges. Combining your system knowledge with their product application expertise will yield the best solution.

Wednesday, May 18, 2016

Radar Level Transmitter Crosses Competitive Price Level

pulse burst radar non-contact level measurement transmitter Magnetrol
Magnetrol Model R82 Radar Level Transmitter
With its ability to reliably detect tank liquid surface level under conditions that prove challenging to other methods, radar technology generally provides an operational advantage over other non-contact level measurement options. Historically, the cost of radar level transmitters for industrial process control applications has hindered their success as a unit of choice for some installations. Magnetrol has changed that imbalance with their recent introduction of a lower cost radar level transmitter for tough applications.

The Model R82 provides radar performance at a price point comparable to competitive ultrasonic units, but maintains the performance advantage inherent in a radar based device. The unit utilizes pulse burst radar technology at 26 GHz, employing advanced signal processing to filter out false echos produced by a range of in-tank conditions that can produce false readings from ultrasonic units.

The short video below provides a closer look at the R82 and its performance advantages. Technical data sheets and any application assistance you may need is available from product specialists. Share your level measurement and control challenges with them and work toward the best solution.

Wednesday, May 11, 2016

Understanding Instrument Valves

gauge root valve for process control, stainless steel
Gauge Root Valve, a type of
instrument valve
Courtesy Mac-Weld
Process measurement and control employs a wide array of gauges and instruments that may be permanently or temporarily connected to a piping system. Providing controlled isolation and connection of these instruments is the function of what are generically referred to as "instrument valves" or "gauge valves". These valves are generally small, with connection sizes ranging from 1/8" to 1", though there are specialty variants outside this range. The predominant valve type is a needle valve, but ball valves and some other types are also used. Certain attributes of particular applications may weight a selection decision toward a valve type. Widely used throughout the process industries, instrument valves are often designed to accommodate pressures as high as 6000 PSI and are intended for service with gaseous or liquid service.

When selecting an instrument valve, consider construction materials that are compatible with the process media. Additionally, operating temperature and pressure of the process must be well within the limits of the valve.

Instrument needle valves provide reliable function to throttle, regulate and isolate gaseous and aggressive non-viscous liquid services. Product offerings range from simple two-way isolation valves to multiport gauge root valves providing multifunction capability to isolate, calibrate and vent gauge, pressure switches and static instrument applications. Ball valves in this class do not provide the throttling accuracy of a needle valve, but may provide some advantage with the use of certain media. The ball valve design, with its full size port, enables easier cleaning and a lessened potential for clogging.

There are three basic configurations of instrument valves. The simplest is the isolation valve with a single inlet and outlet. It provides for selection of exposure or isolation of a connected gauge or other device to the operating process piping or vessel. Maintenance or replacement of the connected device can be effected without opening the contained process to the surrounding environment.

instrument valve schematic isolation valve schematic
Schematic representation of isolation valve

A second variant of instrument valves performs the function of an isolation valve, but has an added port on the outlet side (the side where a gauge or instrument would be connected). The added function of the port is to provide connection access for service, calibration, sampling, purging, or a host of other tasks, all of which can be completed while the process remains in operation.

schematic of block and bleed instrument valve for process control
Schematic representation of block and bleed valve
The third form of instrument valve is a multi-port valve with a single inlet and three outlets. It is often called a "gauge root valve" and serves a number of purposes with its multiple outlet connections. Sometimes two of the ports will be plugged and the instrument or gauge connected to the port providing the most convenient or functional orientation of the connected gauge or the valve handle. This valve can also enable a wide variety of applications through connection of additional instruments, gauges, valves, or other equipment.

schematic of gauge root valve for process measurement and control
Schematic representation of gauge root valve
Share your process measurement and control instrumentation and gauge challenges with application experts and benefit from their expertise.

Monday, May 2, 2016

Accurate Measurement of Very Low Flow Rates Is Key to Compressed Air System Energy Savings

Ultrasonic flowmeter for low flow rates and compressed air
The Flexus G704 CA is specially configured for
measuring flow in compressed air systems
Courtesy Flexim
Operators of plants where compressed air is utilized as an energy source are well aware of the cost associated with continuous delivery of this useful medium. Large or multiple compressors consume considerable amounts of electric power maintaining system pressure and flow requirements. With extensive piping and countless fittings, there are many potential points of leakage. Scheduling of various production operations can vary the demand for compressed air significantly. Getting control of your compressed air system and reducing operating cost is a noble goal. One of the primary tools needed to manage energy costs will be accurate and reliable flow measurement equipment. Here are some characteristics of flow measurement instrumentation that should prove advantageous:

  • Non-invasive measurement from the outer pipe wall that does not add potential leak sources or pressure drop.
  • Availability in fixed or portable configuration.
  • Highly accurate, with paired temperature compensated traceable calibrated transducers
  • Installed without disturbance to piping.
  • Bidirectional measurement
  • Rugged instrument design suitable for any kind of industrial environment
portable ultrasonic compressed air flow measurement instrument
Portable version of specialized ultrasonic flow
measurement instrument for compressed air

Ultrasonic flow measurement technology can provide all of these characteristics, providing
information that enables the operator to make fact based decisions about system design, management, and maintenance. Learn more about how ultrasonic flow meters specifically configured for compressed air system application can help you start reducing your operating cost and developing a higher level of control over your compressed air system. Share your process challenges with a product specialist and work together to build the best solution.