Showing posts with label Magnetrol. Show all posts
Showing posts with label Magnetrol. Show all posts

Two and a Half Decades of Excellence: Magnetrol's Guided Wave Radar Legacy

Two and a Half Decades of Excellence: Magnetrol's Guided Wave Radar Legacy

M.S. Jacobs and Associates and Magnetrol proudly announce the 25th Anniversary of Magnetrol's Eclipse Guided Wave Radar. Magnetrol pioneered the use of guided wave radar in level measurement and continues to expand on its product offerings with the offering of Magnetrol's new Model 700. First, let's discuss the Model 706 and then the Model 700, along with a brief history of Magnetrol's Eclipse Guided Wave Radar.  

The Eclipse® Model 706 high-performance, loop-powered, 24 VDC level transmitter uses proven guided wave radar (GWR) technology, and encompassing several significant engineering accomplishments, this leading-edge level transmitter is designed to provide measurement performance well beyond that of many of the more traditional technologies. Through utilizing "diode switching" technology, along with the most comprehensive probe offering on the market, this single transmitter has a wide variety of applications ranging from very light hydrocarbons to water-based media.

The innovative angled, dual-compartment enclosure is now standard in the industry. This enclosure, first brought to the industry by Magnetrol® in 1998, is angled to maximize the ease of wiring, configuration, and viewing of the versatile graphic LCD.

One universal ECLIPSE Model 706 transmitter can be used and interchanged with all probe types and offers enhanced reliability as it is suitable for use in critical SIL 2/3 Certified safety loops.

The ECLIPSE Model 706 transmitter supports both the FDT/DTM and enhanced DD standards, which allows viewing of valuable configuration and diagnostic information such as the echo curve in tools such as PACTware™, AMS Device Manager, and various HART® Field Communicators.

Below is a timeline of Magnetrol's history f the Eclipse Guided Wave Radar.

The Eclipse® Model 700 Transmitter is a loop-powered, 24 VDC level transmitter based upon the proven and accepted technology of Guided Wave Radar (GWR) and encompassing several significant engineering accomplishments. This leading-edge level transmitter provides measurement performance well beyond that of many of the more traditional technologies. 

A single Model 700 transmitter has many applications ranging from very light hydrocarbons to water-based media. One universal Model 700 transmitter can be used and interchanged with several different probe types and offers enhanced reliability as it is certified for use in critical SIL 2/3 hardware safety loops.

The ECLIPSE Model 700 supports the FDT/DTM and Enhanced DD (EDDL) standards, which allow viewing of valuable configuration and diagnostic information such as the echo curve in tools such as PACTware™, AMS Device Manager, and various HART® Field Communicators.

M.S. Jacobs and Associates is your local Representative for all of Magnetrol's and Orion's products. Join us and celebrate 25 Years of Magnetrol's Eclipse Guided Wave Radar and let M.S. Jacobs and Associates solve your level applications. 

The Magnetrol Eclipse 700 Guided Wave Radar Transmitter

Magnetrol Eclipse® Model 700 TransmitterThe Magnetrol Eclipse® Model 700 Transmitter is a loop-powered, 24 VDC level transmitter that is based upon the proven and accepted technology of Guided Wave Radar (GWR). Encompassing a number of significant engineering accomplishments, this leading edge level transmitter is designed to provide measurement performance well beyond that of many of the more traditional technologies.

This single transmitter can be used in a wide variety of applications ranging from very light hydrocarbons to water-based media.

One universal Model 700 transmitter can be used and interchanged with several different probe types and offers enhanced reliability as it is certified for use in critical SIL 2/3 hardware safety loops.

The ECLIPSE Model 700 supports both the FDT/DTM and Enhanced DD (EDDL) standards, which allow viewing of valuable configuration and diagnostic information such as the echo curve in tools such as PACTware™, AMS Device Manager, and various HART® Field Communicators.


For more information, contact M.S. Jacobs. Call them at 800-348-0089 or visit their website at https://msjacobs.com.

Innovative Adapter Allows Easy, Less Costly Upgrade of Level Transmitter

Model 706 Adapter
An installed view of the Model 706 Adapter.
Magnetrol International, a global leader in level and flow measurement instrumentation, has introduced an innovative product that allows for the retrofit and upgrade to a higher level transmitter package for existing guided wave radar (GWR) level probe applications.
The new Eclipse Model 706 GWR Adapter allows users to keep existing Eclipse 705 GWR probes in place, and upgrade to the Eclipse 706 transmitter and its advanced electronics and DTM.

The ECLIPSE 705 guided wave radar transmitter, with its patented easy-access, angled enclosure has gained wide popularity and has a huge installed base around the world.

The Eclipse 706 transmitter supports both the FDT/DTM and enhanced DD standards. A DTM (Device Type Manager), similar to device drivers used in computers, provides a user-friendly graphical interface to make device configuration, maintenance, diagnostics and troubleshooting a breeze. The DTM allows viewing of valuable configuration and diagnostic information such as the echo curve in tools such as PACTware™, AMS Device Manager, and various HART® Field Communicators. 

Model 706 AdapterIn many cases, GWRs are installed in hard to access areas, where removing the sensing probe from
the tank or vessel is prohibitive. Additionally, or the integral electronics and cumbersome DTM of older Eclipse Model 705s is less comprehensive and less user-friendly than the newer Model 706s. 

The Model 706 Adapter allows existing Model 705 probes to be retrofitted with the Model 706 transmitter without breaking the process seal, gaining the best-in-class GWR performance that comes along with the Model 706 including the highest Signal-to-Noise (SNR) ratio in the market.  High SNR is particularly helpful in low dielectric liquids often found in refineries.

Aside from the increased performance, the technician could now use the latest Model 706 DTM for troubleshooting.  The main DTM features emphasized by users are:
  • The capability, on a single screen, to view not only the echo curve itself but also the operational conditions of the transmitter along with the configurable parameters.  You can then change parameters and refresh the curve to see immediate results without going into multiple screens.
  • Data logging capabilities where you can capture all of the data associated with the last nine events, which include configuration parameters, echo curve, echo curve history and event history.
  • The Model 706 has the capability to monitor build-up as a percent of level threshold or as a rate.  Meaning the user can potentially track the build-up percentage or rate through a HART variable to trigger a flushing process or for timely maintenance / cleaning intervals.
Benefits of the Eclipse® Model 706 GWR Adapter:
  • Backwards compatibility with existing Eclipses probes.
  • Extends the lifecycle of existing Model 705 probes.
  • The added benefit of facilitating the upgrade without opening up the process.
  • Lower cost because you are only replacing the transmitter and not the probe.
  • Compact design adds 3.15” of installation height.
  • Customers get all the features of the Model 706 Transmitter while using their existing Model 705 probes.
  • Adapters are in stock at Magnetrol
For more information, contact M.S. Jacobs and Associates. Call them at 800-348-0089 or visit their web site at https://msjacobs.com.

Minimize Controllable Feedwater Heater Losses Through Heat Rate Awareness


A feedwater heater is a device used in a power plant to pre-heat water being delivered to a steam generating boiler. Preheating the feedwater prior to steam generation improves the thermodynamic efficiency of the system. Heat rate is a measure of how efficiently a power plant uses heat energy. You can measure heat rate by the number of BTUs the power plant requires to generate a kilowatt hour of energy. As your heat rate goes up, so do your fuel costs. Considering fuel expenditures account for 70 to 80 percent of production costs and millions of dollars per year, improving heat rate one percent could generate five hundred thousand dollars in annual savings for a 500 megawatt power plant.

To contain fuel costs, power plants must maximize the efficiency of their feedwater heaters. That's why many companies today are focusing on improving heat rate as a way to use their feedwater heaters more effectively and significantly reduce their fuel costs.

The video above (courtesy of Magnetrol) explains ways to focus on heat rate awareness to minimize controllable losses from the feedwater system.

For more information, contact M.S. Jacobs and Associates. Call them at 800-348-0089 or visit their web site at https://msjacobs.com.

Level Instrumentation for Steam Generation

Level Instrumentation for Steam Generation

Steam is today’s utility player in the industrial energy arena. It cleans and sterilizes, dries and concentrates, separates and evaporates. In cookery, it preserves flavor, texture, and retains nutrients. In chemistry, it fosters reactions by controlling process pressure and temperature. In biotechnology, it’s essential for growing production organisms. Steam ranges in purity from boiler grade for routine tasks, to culinary grade “Clean Steam” for food and dairy, and graduates up to super pure, pyrogen-free steam for biopharmaceutical use.

Magnetrol, a world-leading manufacturer of level and flow instrumentation, has assembled an excellent application summary for the use of level instrumentation in steam generation.


Magnetic Level Indicators (MLIs)

Magnetically coupled liquid level indicators
Magnetically coupled liquid level indicators, or MLIs, are in widespread use throughout process industries. Originally designed as an alternative to sight and gauge glass devices, the MLI is now commonly used in both new construction and plant expansion. They are engineered and manufactured to indicate liquid level accurately, reliably, and continuously. These units are completely sealed and require no periodic maintenance. MLIs also eliminate vapor or liquid emission problems common with sight and gauge glasses.

APPLICATIONS
  • Feedwater heaters
  • Industrial boilers
  • Oil/water separators
  • Flash drums
  • Surge tanks
  • Gas chillers
  • Deaerators
  • Blowdown flash tanks
  • Hot wells
  • Vacuum tower bottoms
  • Alkylation units
  • Boiler drums
  • Propane vessels
  • Storage tanks
Download a full Orion Instrument capabilities brochure here. For more information on Magnetic Level Indicators, contact M.S. Jacobs & Associates by calling 800-348-0089 or visit their web site at https://msjacobs.com.

Magnetrol Pulsar Model R86 26 GHz Pulse Burst Radar Level Transmitter

The Magnetrol PULSAR Model R86 radar transmitter is based on pulse burst radar technology combined with equivalent time sampling circuitry. Short bursts of 26 GHz microwave energy are emitted and subsequently reflect- ed from the liquid level surface. Distance is first measured by the equation:

D = Transit time (round-trip)/2

Applications:
  • Media: Liquids and slurries; hydrocarbons to water- based media (dielectric 1.7–100, 1.4 in stillwell)
  • Vessels: Most process or storage vessels up to rated temperature and pressure. Pits and sumps as well as glass-lined tanks.
  • Conditions: Virtually all level measurement and control applications including process conditions exhibiting varying specific gravity and dielectric, visible vapors, high fill/empty rates, turbulence, low to moderate foam and buildup.


https://msjacobs.com
800-348-0089

Use of Thermal Dispersion Flow Switches for Pump Protection

thermal dispersion flow switch
Model TD2 Thermal Dispersion Flow Switch
Image courtesy Magnetrol
Thermal dispersion flow switches use an operating principle similar to that of a thermal mass flow meter. Moving fluid carries heat away from the probe tip reducing the temperature difference between a heated resistance temperature detector (RTD) and a reference RTD. Unlike a flow meter, a thermal dispersion switch operates with setpoints, comparing the detected flow rate to the setpoints and controlling a relay or other digital output in response. Manufacturers will refer to the switch being in “alarm” at set point. How the relay is wired (NC-CO or NO-CO) depends on the needs of the application.

High or low flows can be detected by thermal dispersion switches. While thermal dispersion flow measurement technology is applicable for gases and liquids, pump protection is the subject of this post, and reference will be limited to liquid flows and low flow detection.

Running pumps with inadequate liquid throughput is well recognized as a source of excessive wear, parts damage, cavitation and downtime due to repair. The cost of replacement parts, repair labor and lost production time can ramp up very quickly.
Monitoring liquid flow rate and triggering an alarm or pump shutdown to prevent damage has substantial benefit, even in a system of comparatively modest size.
There are many technologies that can measure liquid flow and function as part of a pump protection scheme. Flow meters can be used, but a continuous flow measurement may not be needed for the application. Flow meters typically are more costly than flow switches.

Mechanical flow switches are an alternative. Prior to the availability of electronic controls, they were generally the only method employed. They use a mechanical operator, driven by liquid flow, to actuate a relay. Typically, a vane or paddle is in the flow stream and swings in the direction of the flow. When the vane moves a predetermined distance, a magnetic sleeve or other device rises to draw the magnet in to actuate the switch. Moving parts are subject to wear, possible jamming and increased maintenance over time. Viscous liquids or those that may accumulate deposits on the operating mechanism can decrease reliability of the switch. A mechanical flow switch may be desirable if there is limited on-site power. In terms of the installation, the pipeline must be horizontal.

Vibrating forks and ultrasonic gap switches are other technologies employed for pump protection. It is inherent in these technologies that the presence or absence of liquid at the sensor location is all that is detected, not actual fluid flow. They are unable to detect decreasing flow rates, and their "gap" at the sensor creates opportunity for plugging or fouling with some liquids. Common applications for these switches are sumps or wet wells. Dual ultrasonic gap switches have pump control modes where the unit performs auto-fill or auto-empty as needed. 

Thermal dispersion flow switches deliver a robust feature set and application flexibility.
  • No moving parts
  • Low maintenance burden 
  • Range of probe types to accommodate water or more viscous liquids 
  • Installation in horizontal or vertical lines
  • Variety of mounting types and insertion locations 
  • Optional remote mount electronics
  • Hot tap options available
  • Low flow detection as opposed to dry pipe 
  • Current output for trending and fault indication
  • Temperature compensation to reduce set point drift under varying operating temperatures 
Probe Types

The standard probe design offered by thermal dispersion switch manufacturers is a twin tip construction to house the sensors. The twin tip is essentially two tubes welded to the end of the probe that are in the process liquid.

Twin tip probes can be beneficial as multiple manufacturers have similar designs. It has a very high pressure rating and is available in a variety of construction materials.

A unique design that may be preferred for liquid applications is the spherical tip probe. The lack of pins at the end of the probe eliminates plugging in viscous applications while the thin wall allows increased sensitivity with the process liquid. With pressure ratings up to 600 psig (41 bar) and standard 316 stainless steel material of construction it is suitable for most pump applications.

Electronics

The electronics for the thermal dispersion switch can be integral to the probe assembly or remotely located, enclosed in an explosion proof or other suitable housing. Wiring is simplified with the terminals easily accessible without removal of the bezel or any circuit boards. Along with the ease of installation come many diagnostic features incorporated in the microprocessor based electronics.

A useful diagnostic feature in the electronics is the current output. It is not a linear 4-20 mA output, similar to a flow meter, but the current will act as a live signal that varies with heat transfer. For example, in a low flow condition the current may be 8 mA and at normal flows 12 mA (output varies for each application). The current will be repeatable for a given low flow set point. If there is turbulence in the line, possibly being caused by a closed valve with the pump still running, the sensor will see this turbulence as a higher flow rate than what is actually occurring. The live signal allows the operator to monitor conditions to which the sensor is exposed and possibly develop custom diagnostics for the fluid system.

Along with the trending capabilities of using the current output, this output will also go low or high when a fault condition occurs according to NAMUR NE 43. For pump applications where a low flow alarm is desirable, the current will fall to less than or equal to 3.6 mA during the fault. The microprocessor based electronics monitor for any open circuits or flow signal that goes out of range. Without a microprocessor, the flow switch could be subject to more noise, have drift issues and need more frequent calibration to maintain the set point.

The user also has the option to select a window in the housing of the electronics. This window allows viewing of the LEDs to show normal operation (relay energized), alarm/set point (relay de-energized) and fault conditions (relay de-energized). Switch and process operation can be confirmed locally at a glance.

Because the principal of operation of thermal dispersion switches is temperature dependent, temperature compensation is provided in the electronics circuitry. Temperature compensation will reduce set point drift under varying operating temperatures.

Pump Installations

Both positive displacement and centrifugal pumps have performance curves to maximize efficiency. There is an ideal combination of differential head and flow rate that will provide the best results. If monitoring the differential head, a thermal switch can be set up to shut the pump down when it is operating below the ideal flow rates. Worst case scenario, the thermal switch is installed to verify there is liquid flow to prevent excessive wear or failure.

Installing the thermal switch in either the suction or discharge piping is acceptable. It is important to install in a location where the sensor tip will be exposed to liquid movement, especially in the case of a partially filled pipe. When field calibrated, which is most often the case for thermal switches, it is not necessary to install at the centerline of the pipe. As long as the probe is far enough into the pipe to see liquid movement, it will provide repeatability at the given flow rate. A quarter to half way into the pipe is common.

Installing a few diameters away from the pump will reduce the impact of excess turbulence. Turbulence may cause the switch to sense higher flow rates than what is actually occurring inside of the pipe. Movement of liquid due to turbulence can theoretically create as much heat transfer as the liquid flow itself. The aforementioned current output is a helpful diagnostic feature in more difficult installations.

Summary

Thermal dispersion switches are used in pump protection applications ranging from standard water to high viscosity liquids. There are unique sensor designs for each individual application, including the popular spherical tip, low flow bodies and high temperature/pressure probes. The multitude of probes in conjunction with the advanced electronics make thermal dispersion switches a competitive technology for pump protection.

Share your fluid flow challenges with process measurement specialists. Leverage your own knowledge and experience with their product application expertise to develop effective solutions.

A Little History

26 GHz radar level measurement transmitter
Pulsar® R86 Radar Level Transmitter
One of Magnetrol's recent innovations.
Some companies, through hard work, innovation, and good fortune, manage to stand the test of time and thrive for decades in a competitive environment. The manufacture of process measurement and control equipment and devices is an arena where standing still in the market is not a viable business strategy. Magnetrol has been helping process operators measure and control fluid level and flow for decades. The company recently posted an article on their own blog outlining a little of the company history as illustrated through product innovations. We include an excerpt from the blog below and encourage readers to share their fluid level and flow challenges with application specialists. Leveraging your own process knowledge and experience with their product application expertise to develop effective solutions.

This year marks the 85th anniversary of the founding of Magnetrol®. Since its very beginning, MAGNETROL has been a company focused on level and flow measurement innovation, designing cost-effective, cutting-edge solutions for its customers. In honor of 85 years of success, here’s a look back on some MAGNETROL highlights over the years. 
The Beginning
The history of MAGNETROL dates to 1932 as a Chicago-based manufacturer of boiler systems. The first MAGNETROL level control was born when the founding company, Schaub Systems Service, needed a controller for its boiler systems. Our innovative device was the first of its kind to accurately and safely detect the motion of liquid in boilers and feedwater systems. Soon the MAGNETROL name became synonymous with rock-solid, reliable mechanical buoyancy controls.

Mechanical buoyancy isn’t the only area where MAGNETROL has been a force for innovation. Our devices have changed the radar landscape as well. In 1998, we introduced the Eclipse® Model 705 as the first loop-powered guided wave radar (GWR) transmitter for industrial liquid level applications. The unprecedented reliability and accuracy of the ECLIPSE 705 set a new standard for radar devices.Innovation in Radar
We didn’t stop there, continuing to develop radar technology and adapt it to the needs of our customers. In 1999, MAGNETROL released the first ECLIPSE high-temperature/high-pressure probe, rated to 750 °F (400 °C). We developed an overfill-capable coaxial probe in 2000. And in 2001, we became the first company to incorporate GWR technology into a patented magnetic level indicator chamber, offering true redundant measurement.
In addition to these new developments in GWR, MAGNETROL created many pulse burst and non-contact radar devices for use in challenging process applications. We also secured our core capabilities in electronic technologies, including RF capacitance and ultrasonic.
 Looking Toward the Future
Most recently, MAGNETROL released the Pulsar® Model R86, a groundbreaking new 26GHz non-contact radar featuring a smaller wavelength for smaller antennas and improved 1mm resolution.
We continue to raise the bar for level and flow measurement. Whatever the future of industrial technology, MAGNETROL will be in the thick of it, developing the products that bring customers accuracy, reliability and peace of mind. We are a team of innovators—and innovators are always moving forward.

Thermal Mass Flow Measurement of Tank Blanketing Gas

thermal dispersion mass flow meter insertion type
Insertion style thermal mass flow meter can measure
low flow rates of gas for tank blanketing.
Courtesy Magnetrol
Closed liquid tanks and other vessels contain two substances, liquid and not liquid. The liquid, in this case, is the subject material of a process. The "not liquid" is whatever fills the space not filled by the subject liquid. There are many cases where the process, the subject liquid, and safety are best served by filling the space with a known gas. There may be concerns about ignition of the vapor from the liquid, reactivity of the liquid with oxygen, or a wide range of other issues that call for filling the tank space with a known gas.

Nitrogen is a commonly employed gas for tank blanketing. It is comparatively inexpensive and widely available. It can inhibit combustion by displacing atmospheric oxygen and is not reactive with most industrial process chemicals.

Vessels with rapidly changing levels, or those of very large size, will require larger available flow capacity of blanketing gas to maintain the desired conditions within the tank. There are regulating valves designed specifically for tank blanketing operations. Vents intended for use in the same application are also commercially available.

Monitoring tank liquid level and gas flow are part of best practices for a tank blanketing operation. Confirming that gas flow rate is commensurate with the requirements for current tank level confirms proper operation. Too high a flow rate could indicate a leak or malfunction of a blanketing system component. It may also be useful to totalize gas flow for use in operational planning.

Thermal insertion flow meters are suitable for measuring the wide range of gas flow rates employed in tank blanketing applications. The instruments are available for insertion installation, as shown in the image near the top of this article, or as inline units. Either configuration delivers accurate measurement with no moving parts, a high turndown ratio, and minimal maintenance requirement.

Share your tank blanketing requirements and challenges with process measurement and control specialists, combining your own process knowledge and experience with their product appliction expertise to develop effective solutions.

Thermal Mass Flow Meter Questions Answered by Experts

Insertion style thermal mass flowmeter
Thermatel, insertion style thermal mass flow meter
Image courtesy of Magnetrol
Knowledgeable individuals that share expertise and experience with others in their field are a valuable resource, worthy of our attention.

Tom Kemme, from Magnetrol®, expertly fielded some questions about thermal mass flow meters in a recent blog post. Mr. Kemme's responses were so useful and clear that I decided, with all the credit flowing his way, to share them here for those of you that may not closely follow the Magnetrol® Blog.

Will thermal mass flow meters be affected by changes in the composition of gas (i.e. will they require recalibration every time the composition changes)?
Thermal mass flow meters measure a flow rate based on convective heat transfer. Fluid properties are some of the many factors that influence convection. Each gas has unique properties, which is why these flow meters are calibrated for a specific application. You would not want a meter calibrated for an air application placed into a natural gas application without recalibration or some type of field adjustment if applicable.
All gas mixes are not created equal. If you had a gas mix with high hydrogen content, a variation in hydrogen would have a much greater effect than typical variation in natural gas content. Hydrogen has a tendency to create more heat transfer than most gases. For natural gas, it is common to have some slight variation in composition between the calibration of the device and the application itself. However, the effect is minimal for slight changes in methane or ethane at different times of the year. Natural gas fuel flow is one of the most prevalent applications for thermal mass.
Based on our experience, the biggest cause of malfunction in flow meters is improper installation. If you do not install a flow meter per the manufacturer’s recommendation this will greatly influence the performance of the meter. For thermal mass, this includes proper straight run, depth into the pipe (insertion probes) and flow arrow alignment.
Each application presents unique difficulties for every flow meter technology, and each end user has unique needs. There is no exact answer as to when a recalibration would be needed for thermal mass flow, as it is application dependent. You do not always need recalibrations for variation in gas composition.
What role do thermal flow meters play in emissions monitoring applications?
Thermal flow meters are at the forefront in flow measurement for emissions reporting and energy management projects. The energy management arena spans many markets, including some of the largest in the oil & gas and power industries. Some popular applications include monitoring gas fuel flow to a combustion source to report SO2 (sulfur dioxide) emissions, stack (flue) gas flow in power plants as part of a continuous emissions monitoring (CEM) system of NOX (nitrous oxide) and SO2, and flares in a gas field that need to be reported to environmental authorities. These applications prove difficult for many flow meter technologies.
For example, in a flare application most of the time gas is not being flared off, but it needs to be measured in case of an event. The user will want to monitor the low flow of pilot gas keeping the flare lit. This requires a flow meter with a very high turndown with good low flow sensitivity, which is a limitation of some technologies, such as differential pressure flow meters.
Many operators are most concerned with measuring CO2 (carbon dioxide) emissions. However, with thermal flow meters we are increasingly finding applications with the need for methane measurement. Methane is a greenhouse gas that has more than 20 times the global warming potential as CO2. No longer can coalmines or landfills emit this directly to the atmosphere. If not flaring the gas off, the owners are beginning to capture it, treat it, and produce usable natural gas from it. Some facilities that emit landfill gas, or facilities that produce biogas, are involved in carbon credit programs or clean development mechanisms. Similar applications can be found in wastewater treatment plants where customers are reporting digester gas emissions and even capturing this gas to produce electricity and reduce energy costs. Thermal dispersion flow meter technology, such as the MAGNETROL Thermatel® TA2, has become well accepted in all of these markets.
You can easily tap into Magnetrol® expertise to solve your flow measurement challenges. Reach out to a product specialist and combine your process knowledge with their flow measurement expertise to develop effective solutions.

Thermal Dispersion Flow Switches For Pump Protection

thermal dispersion flow switch pump protection
Thermal dispersion flow switches have advantages
when applied for pump protection
Image courtesy Magnetrol
Good practice for installing industrial pumps calls for inclusion of protective devices to assure that the pump is not exposed to conditions beyond its design intent. Monitoring liquid flow is a useful method for determining if a pump is operating within a safe range.

There are numerous methods of verifying flow in piping connected to a  pump. Magnetrol, globally recognized manufacturer of flow and level measurement technologies, offers up their assessment of various pump protection measures and a recommendation for what they consider an advantageous choice for flow measurement in a pump protection application.

Magentrol's white paper is included below, and you can share your flow and level measurement challenges with application experts for help in developing effective solutions.


New Non-Contact Radar Level Transmitter From Magnetrol

non contact radar level transmitter
New Pulsar R86
Non-contact radar level
transmitter
Courtesy Magnetrol
The determination of level in tanks or other vessels is a lifeblood operation in fluid processing. A number of technologies are available that provide workable solutions for a designated range of uses. Selecting the most appropriate measurement technology for an application can entail consideration of how several goals are achieved.

Accuracy - Differing applications will place their own importance on the degree of accuracy needed. Some operations, depending upon the value of the material, safety impact of over or under filling, and other operation specific factors, will benefit from higher levels of accuracy. Matching the instrument accuracy to the needs of the operation can often save first cost and widen the field of prospective instruments to be considered.

Reliability - Reliability has two facets. Of course, any operation benefits from an instrument that starts working and keeps working. The challenge is to evaluate how the instrument works and compare that to how the process works. Does the process expose the instrument to conditions that may impair its function or shorten its useful life? The second facet concerns the degree of confidence that the operator can place on the level reading delivered by the instrument. Will the readings be accurate under all reasonably probable operating conditions? Are there process conditions which may generate a false level reading? The ability of the measurement technology and the instrument to consistently deliver information that can be used for decision making is paramount.

Low maintenance burden - Maintenance is still largely accomplished by people, a limited resource in any operation. An instrument that requires less technician time to maintain proper operation brings a benefit to the operation.

There can certainly be other factors to consider for any application, but a systematic weighing of those many factors can result in making a solid decision that delivers a positive outcome.

Magnetrol, globally recognized innovator in level measurement technology, has released its Pulsar R86 non-contact level transmitter for industrial process control use. The new instrument combines the company's many years of innovation in the level measurement field into a single transmitter. The unit has applications throughout almost every industry, with a powerful array of operating features.

A product datasheet is included below, so you can learn more about the Pulsar R86. Share and discuss your level measurement requirements and challenges with process measurement specialists. Combining your own process knowledge and experience with their product application expertise will produce an effective solution.


Improved Level Measurement Contributes to Reduced Heat Rate in Steam Production

Power plant electrical generating plant
Minimizing heat rate and emissions for steam plants
Steam production is a costly operation in any facility, but is of paramount importance in power generation plants. The bottom line of a combustion based power generation facility is sensitive to the cost of input fuel. Measures that can be taken to reduce fuel input for a unit of power output (called heat rate) can translate directly into profitability. An additional benefit of reducing heat rate is a commensurate reduction in emissions.

A major contributor to heat rate reduction is the recovery of heat from the process and transference of that heat into the boiler feedwater. A sizable feedwater preheater of the shell and tube type is used to recover the heat. Shell and tube heat exchanger efficiency can be maximized with accurate control of liquid level.

Magnetrol, globally recognized leader in level measurement technology, makes the case for using guided wave radar level measurement technology as the most advantageous means for this application. The video below describes the process and how the guided wave radar level transmitter can provide the best performance.

Magnetrol has an information kit devoted to heat rate reduction. Share your steam system and level measurement challenges with a product specialist, and ask how you can get the Heat Rate Reduction Kit. Combining your facility and process knowledge with the product application expertise of a specialist will result in effective solutions.

Tank Overfill Protection - Level Measurement Technology Resources for Best Results

crude oil storage tanks with overfill protection level measurement
Crude oil storage tanks, a beneficiary of overfill protection
Industrial liquid processing often includes tanks or other vessels for the storage or combining of product components, raw materials, or finished product. Regardless of the nature of the liquid, overfill and spillage are of concern due to economic loss, downtime, and the creation of hazardous conditions. Good practice calls for detection of overfill conditions in a reliable manner which will provide operators notice of the condition in time to avoid spillage.

Magnetrol®, a globally recognized leader in the field of liquid level measurement, has created a set of resources to help customers understand the need for overfill protection and properly establish a protocol. Different industries and products will have varying levels of risk or hazard, thus different governing standards. The basic benefit to overfill protection is the same throughout...whatever is in the tank should be contained. Included below is one of several resources provided by Magnetrol® to address the issue of overfill protection. You can get the entire set by contacting level control specialists.

There are a number of technologies employed in the measurement of liquid level. Each has its own set of attributes that may prove advantageous for a particular application. Share your level measurement and control challenges with a product application specialist. Combining your process expertise with their product application knowledge will produce effective solutions.



Level Measurement: Comparing Displacer Transmitters and Differential Pressure Transmitters

diagram of displacer level transmitter for process measurement and control
Electronic Displacer Transmitter
Courtesy Magnetrol
Liquid level measurement is ubiquitous throughout industrial fluid processing operations. Whether via direct or inferential means, the fluid level data point is an integral part of operational and safety plans for an installation.

Magnetrol, a globally recognized leader in the design and manufacture of level measurement instrumentation, has produced a comparison of displacer transmitters and differential pressure transmitters applied to liquid level measurement.

What is a displacer transmitter?


Displacer transmitters are considered a direct means of level measurement.

Quoted from Magnetrol website page on displacer transmitters...
Electronic displacer level transmitter technology operates by detecting changes in buoyancy force caused by liquid level change. These forces act upon the spring supported displacer causing vertical motion of the core within a linear variable differential transformer.
As the core position changes with liquid level, voltages are induced across the secondary windings of the LVDT. These signals are processed in the electronic circuitry and used to control the current in the 4-20 mA current loop. The enclosing tube acts as a static isolation barrier between the LVDT and the process media.

 How does a differential pressure transmitter measure liquid level?


Liquid level can be inferred through the measure of the pressure generated by the column of liquid in a tank or vessel. The measurement device must be calibrated for the specific gravity of the measured media in order to attain reasonably accurate results. There are a number of installation arrangements of differential pressure transmitters that will accommodate tanks open to atmosphere, closed pressurized tanks, and more.

The comparison is included below and provides some interesting points to consider. Share your level measurement application challenges with a product application specialist. Combining your process experience and knowledge with their product application expertise will produce the best solutions for your process measurement needs.



Building Steam System Efficiency for Profitable Returns

gas fired boilers in boiler room
Improvements in steam system efficiency can yield
substantial return on investment
Steam, an energy efficient, reliable, scalable form of transferring heat, is utilized throughout commercial, industrial, and institutional settings. The ubiquitous adoption and use of this heat transfer medium has resulted in steam generation ranking as a substantial line item on any organization's financial operating report. The scale of many steam production operations can produce some sizable payback opportunities from modifications that improve efficiency or reduce maintenance requirements.

The application of modern precision measurement instrumentation is one area where comparatively modest investments in system improvement can yield ongoing returns. Magnetrol International, a globally recognized leader in the design and manufacture of flow and level instrumentation, has produced a white paper describing aspects of the steam cycle that are candidates for profitable improvement and how various measurement technologies can help garner the maximum attainable gain in efficiency.

The paper is included below, and will prove to be informative and interesting reading. More information is available on specific instrument recommendations from product application specialists. Share your steam system challenges with them and work together to find the best solutions.



Positive Returns From Steam Generation and Condensate Recovery Efficiency Gain

Two gas fired boilers in a boiler room
Steam systems are excellent candidates for cost saving
through increased efficiency.
The generation of steam is a lifeblood operation to many commercial and industrial operations around the world. The large scale of its use can make steam generation one of the largest energy consumption activities for an industrial plant or commercial building. The size and complexity of steam systems, with generation, condensate handling, heat recovery, and feedwater treatment, provides a number of areas where inefficiencies can cost very substantial sums of money. Conversely, enhancing efficiency toward a maximum attainable level will yield very large savings in operating costs.

Magnetrol International, a globally recognized leader in the design and production of flow and level controls for commercial and industrial use, has produced a video summarizing the elements of the steam system that are good candidates for upgrade, as well as general direction on how to achieve increased efficiency for each. In keeping with the company's line of level and flow measurement products, the focus is on how accurate and robust instrumentation can improve overall system performance and generate a decidedly positive return on the time and funds invested.

Invest a few minutes in the video below and learn how the operating efficiency of your steam system can be elevated with an instrument upgrade. There is a white paper on the same subject available on request. You can also receive a listing of the specific Magnetrol instruments that can be applied to steam systems, with a short description of where each is applied. Reach out to a product application specialist and share your steam system challenges. Combining your system knowledge with their product application expertise will yield the best solution.


Radar Level Transmitter Crosses Competitive Price Level

pulse burst radar non-contact level measurement transmitter Magnetrol
Magnetrol Model R82 Radar Level Transmitter
With its ability to reliably detect tank liquid surface level under conditions that prove challenging to other methods, radar technology generally provides an operational advantage over other non-contact level measurement options. Historically, the cost of radar level transmitters for industrial process control applications has hindered their success as a unit of choice for some installations. Magnetrol has changed that imbalance with their recent introduction of a lower cost radar level transmitter for tough applications.

The Model R82 provides radar performance at a price point comparable to competitive ultrasonic units, but maintains the performance advantage inherent in a radar based device. The unit utilizes pulse burst radar technology at 26 GHz, employing advanced signal processing to filter out false echos produced by a range of in-tank conditions that can produce false readings from ultrasonic units.

The short video below provides a closer look at the R82 and its performance advantages. Technical data sheets and any application assistance you may need is available from product specialists. Share your level measurement and control challenges with them and work toward the best solution.

New Product: Non-Contact Radar Level Transmitter

non-contact radar level transmitter for industrial process measurement and control
Model R96
Non-Contact Radar Level Transmitter
Courtesy Magnetrol
A new entry into the non-contact radar level measurement transmitter arena has been released by Magnetrol, a well known manufacturer of level and flow measurement instrumentation for the industrial process control field. The new Model R96 Non-Contact Radar Level Transmitter is intended primarily for applications where continuous fluid level measurement is required.

The company sums up the technical capabilities with their description of the product...

"Virtually unaffected by the presence of vapors or air movement within a vessel’s free space, the two-wire, loop-powered, 6 GHz Radar transmitter measures a wide variety of liquid media in process conditions ranging from calm product surfaces and water-based media to turbulent surfaces and aggressive hydrocarbon media."

The Model R96 level transmitter offers features that combine to deliver a state-of-art instrument for accurate continuous level measurement. A product brochure is included below. Contact application specialists to formulate the right product configuration for your level measurement challenge, or to get more detailed information.