Friday, September 15, 2017

Automatic Self Cleaning Strainer for Fluid Processing

cutaway view of automatic self cleaning strainer
An automatic self-cleaning strainer is suitable for many
applications and reduces manual maintenance.
Strainers and other filtration equipment reduce the burden of targeted unwanted solids in a fluid system. Potentially damaging particulate material is trapped and held for removal from the system. Keeping fluid systems clean helps to maintain long term design performance and potentially extends the operating life of pumps, valves, and other mechanical devices in the system.

Strainers generally consist of a heavy duty housing and a contained screen with controlled opening size designed to disallow the passage of particles exceeding a targeted size. Trapped particulates remain on the screen, or within a shape created by the screen such as a basket (see basket strainer). The continuing collection of solids will eventually impede the free flow of the process fluid, so the strainer must be emptied or cleaned periodically. The frequency of cleaning is a function of the solids content of the incoming fluid and may not necessarily be a regular interval. A simple strainer, to be cleaned, requires temporary shutdown of the flow or bypass of process fluid around the strainer assembly. A duplex strainer consists of twin strainers, usually housed in a common assembly, with a diverter valve that allows the inlet flow to be directed to one of the strainers while closing off the other from the system. This allows for cleaning of one of the strainers while the other is in active service, maintaining continuous fluid flow.
A third solution provides the continuous operation of a duplex strainer, but without the need for manual cleaning. 
An automatic self-cleaning strainer, such as the MCS 500 from Eaton provides uninterrupted operation without a duplex configuration or regular manual cleaning. It's form is essentially a housed strainer with a built-in scraper blade that moves along the inlet surface of the strainer media, moving accumulated solids to a collection chamber at the bottom of the pressure housing. Automatic controls regulate the operation of the scraper and discharge valve on the purge chamber that removes the collected solids from the system. The automatic self-cleaning strainer provides a cost effective time saving solution for the filtration of compatible fluids.

More detail for the MCS 500 is provided below. Share your fluid filtration requirements and challenges with fluid processing specialists. Leverage your own process knowledge and experience with their product application expertise to develop effective solutions.


Tuesday, September 5, 2017

A Little History

26 GHz radar level measurement transmitter
Pulsar® R86 Radar Level Transmitter
One of Magnetrol's recent innovations.
Some companies, through hard work, innovation, and good fortune, manage to stand the test of time and thrive for decades in a competitive environment. The manufacture of process measurement and control equipment and devices is an arena where standing still in the market is not a viable business strategy. Magnetrol has been helping process operators measure and control fluid level and flow for decades. The company recently posted an article on their own blog outlining a little of the company history as illustrated through product innovations. We include an excerpt from the blog below and encourage readers to share their fluid level and flow challenges with application specialists. Leveraging your own process knowledge and experience with their product application expertise to develop effective solutions.

This year marks the 85th anniversary of the founding of Magnetrol®. Since its very beginning, MAGNETROL has been a company focused on level and flow measurement innovation, designing cost-effective, cutting-edge solutions for its customers. In honor of 85 years of success, here’s a look back on some MAGNETROL highlights over the years. 
The Beginning
The history of MAGNETROL dates to 1932 as a Chicago-based manufacturer of boiler systems. The first MAGNETROL level control was born when the founding company, Schaub Systems Service, needed a controller for its boiler systems. Our innovative device was the first of its kind to accurately and safely detect the motion of liquid in boilers and feedwater systems. Soon the MAGNETROL name became synonymous with rock-solid, reliable mechanical buoyancy controls.

Mechanical buoyancy isn’t the only area where MAGNETROL has been a force for innovation. Our devices have changed the radar landscape as well. In 1998, we introduced the Eclipse® Model 705 as the first loop-powered guided wave radar (GWR) transmitter for industrial liquid level applications. The unprecedented reliability and accuracy of the ECLIPSE 705 set a new standard for radar devices.Innovation in Radar
We didn’t stop there, continuing to develop radar technology and adapt it to the needs of our customers. In 1999, MAGNETROL released the first ECLIPSE high-temperature/high-pressure probe, rated to 750 °F (400 °C). We developed an overfill-capable coaxial probe in 2000. And in 2001, we became the first company to incorporate GWR technology into a patented magnetic level indicator chamber, offering true redundant measurement.
In addition to these new developments in GWR, MAGNETROL created many pulse burst and non-contact radar devices for use in challenging process applications. We also secured our core capabilities in electronic technologies, including RF capacitance and ultrasonic.
 Looking Toward the Future
Most recently, MAGNETROL released the Pulsar® Model R86, a groundbreaking new 26GHz non-contact radar featuring a smaller wavelength for smaller antennas and improved 1mm resolution.
We continue to raise the bar for level and flow measurement. Whatever the future of industrial technology, MAGNETROL will be in the thick of it, developing the products that bring customers accuracy, reliability and peace of mind. We are a team of innovators—and innovators are always moving forward.