Showing posts with label process control. Show all posts
Showing posts with label process control. Show all posts

Cashco Control Valves: Product Summary

Cashco Control Valve
Cashco Ranger QCT
Cashco, headquartered in Ellsworth, Kansas, manufactures a proprietary line of throttling rotary and linear process control valves and sanitary control valves.

Current models and designs are:
  • Models 988 and 989 - Globe-style control valves with pneumatic spring-return actuator.
  • Model 988-MB - a modified version of our Model 988 designed to handle hazardous fluids.
  • Ranger QCT - universal control valve  that offers 10 different trim combinations which can easily be changed without disturbing the packing, actuator, or positioner calibration.
  • Model 521 - Globe-style control valve with sliding stem, bellows sealed, pneumatically actuated valves designed to achieve the ultimate in long-term corrosive chemical service.
  • Premier EZO (short for easy opening) - Superb throttling characteristics and is designed to eliminate “popoff” flow surges. 
  • Model 987 - Precision globe-style “chemical valve” is the valve to handle hostile fluids and environments – as well as steam and water. 
  • Model 2296/2296HF - A stainless steel or bronze glove-style control valve available with pneumatic or electric actuators. 
  • Model 964 - A globe-style pneumatic control valve for general plant utility services.

800-348-0089

Wireless Hazardous Area Access Point Enclosures, RF Enclosures, and Antennas

The HazaLynk™ Series by Analynk incorporates a wide selection of wireless hazardous area devices to suit a variety of industrial applications. The product line includes hazardous area antennas, hazardous area access point enclosures, and hazardous area RF enclosures that simplify the process of installing field instrumentation, while meeting code requirements for hazardous classified and explosive environments.

For more information, contact M.S. Jacobs by visiting https://msjacobs.com or calling 800-348-0089.


M.S. Jacobs & Associates

M.S. Jacobs & Associates is a leading manufacturer's representative and distributor of industrial instrumentation and controls in Western Pennsylvania, West Virginia and New York. MS Jacobs services and supplies products in all major industrial markets, including power generation, chemical processing, pulp and paper, oil and gas production, water and wastewater treatment, and nuclear power generation.

https://msjacobs.com
800-348-0089

Closed Loop Electronic Pressure Controller

electronic pressure controller
Electronic pressure controller provides closed loop PID
control of outlet pressure.
Image courtesy of Rotork Instruments - Fairchild
The control of pressure in a line, tank or other vessel is a common operation found in the process control field. Many pressure regulators are fully mechanical, with counterforce mechanisms used to set an equilibrium point for the regulator. While these devices are effective, they lack the level of functionality available in an electronically controlled device.

Rotork Instruments, as part of their Fairchild brand, offers a series of electro-pneumatic pressure controllers that have built in PID closed loop microprocessor control utilizing a remote analog or digital setpoint signal. The electronic controller regulates feed and bleed solenoid valves to control pressure in the signal chamber of the booster section. Outlet pressure is measured and used as a feedback signal to the controller to provide accurate control of the outlet pressure. The device functions as a volume booster and I/P transducer.

Any of the devices can be controlled from the onboard keypad or a remote signal. A remote pressure sensor line can also be used with the controller to derive the feedback signal from further downstream from the instrument. This is helpful in eliminating pressure drop effects over the distance from the controller to an identified process point. The remote sensing also can improve system response. Adding the remote sensing is simple, just remove the factory installed plug and install an adapter that facilitates a line connection.

The various models are available with volume booster sections rated for 1 to 700 SCFM. More detail is found in the specification sheet provided below. Share your pressure control challenges with process measurement and control specialists. Leverage your own knowledge and experience into an effective solution with their product application expertise.


High Density Signal Conditioners

microblox signal conditioning module
MicroBlox™ signal conditioning modules offer broad
functionality in a very compact package.
Image courtesy Acromag
Signal conditioning is a common function needed for proper operation of data acquisition or process control systems. The general purpose of signal conditioning is to convert an input signal of one type to an output signal of another, completing a usable path of information from signal generating device to signal using device. With many control and data acquisition systems employing numerous input signals from diverse sources and instruments, a control panel benefits from having a consolidated, adaptable means of performing all the required signal conditioning while occupying a minimized footprint in the panel.

The microBlox™ line of signal conditioners, from Acromag, provides a broad range of signal conditioning functionality in a compact and rugged industrial package. The microBlox™ line of signal conditioners provides a wide array of useful features, broad range of I/O signal compatibility, and a very compact high density footprint. The input modules offer screwless mounting in a choice of backplanes accommodating up to 16 channels. Functions included transmitter, alarm, and signal conditioner.

The variety of available models, some with economical precalibrated ranges, is extensive. The module construction, with its overmolded circuitry, provides resistance to dust, moisture, vibration and shock. The most valued capability of microBlox™ input modules is their Bluetooth connectivity. Mobile devices running either the Android or Apple versions of the Agility app can communicate with enabled modules to perform setup and configuration, diagnostic and troubleshooting functions. Input polling and trending is also possible using the app.

More technical data, illustration and description of the microBlox™ signal conditioners is included below. Share your signal conditioning and I/O challenges with a a product specialist. Leverage your own process knowledge and experience with their product application expertise to develop effective solutions.


Process Measurement and Control Devices for Corrosive Environments

all plastic industrial process measurement corrosion resistant pressure gauge
All plastic corrosion resistant pressure gauge.
Image courtesy ICON Process Controls
ICON Process Controls specializes in corrosion resistant industrial fluid handling process control equipment, offering industry the most complete line of instrumentation products in an all plastic form supported by the largest inventory in North America. Applications for corrosion resistant instrumentation and controls are found throughout...
  • Municipal and industrial water and wastewater treatment
  • Bulk chemical storage, handling and production
  • Steel processing
  • Metal Finishing
  • Chemical Dosing Skids
  • Food and Beverage processing and production
The ICON product line handles tasks for measuring and controlling flow, level, pressure, and temperature in environments that are otherwise challenging or corrosive to other process instruments. Their unique all plastic construction makes the ICON equipment and instruments particularly well suited to the harshest industrial environments.

For information about the complete line of corrosion resistant industrial fluid handling process control equipment from ICON, reach out to the process control experts at MS Jacobs. Share your process control challenges and leverage your own process knowledge and experience with their product application expertise to develop effective solutions.


The Possible vs. The Probable

Overhead view of the Arkema plant in Corsby, Texas.
Image from United States Chemcial Safety Board 
Process stakeholders have concerns and responsibilities regarding operational safety, environmental impact, profitability, and more. At almost every level, the risk of loss, damage, or disaster is scrutinized and evaluated. Steps may be taken to prevent or reduce the impact of some negative event. Other risk reduction methods might be put into play to provide relief from losses suffered. Whatever the case, it is safe to say that much industrial effort is invested in predicting a broad range of "what if" scenarios.

The recent events at the Arkema chemical plant in Crosby, Texas bring to light the limitations we, as process operators of any type, may put on our own thinking and actions. Though investment was made, and was ongoing, to improve aspects of the plant, the operation was still brought to a standstill and a fire ensued that brought the involvement of the US Chemical Safety Board. This resulted because natural events that were likely deemed impossible became reality, with insufficient contingency operations in place to handle the situation.

What is important about the event is what we can all learn from it, what we can use to modify and improve our own methods of evaluating risk and implementing protections to prevent loss and damage. Essentially, the plant was overwhelmed by storm induced flooding that was unprecedented. Grid and backup power sources were rendered inoperable and material that required refrigeration to maintain a safe condition no longer was provided with the needed cold storage environment.

arkema chemical plant timeline hurricane harvey US chemical safety board
Timeline of events related to a fire at the Arkema chemical plant in Crosby, TX
Image is from US Chemical Safety Board 
The relationships between an operation and its surrounding environment are not static. The probability of any event occurring is never zero. When probabilities are perceived as being very small, they might be ignored, but low probability events can and do eventually become part of the plant environment. Developing strong contingency plans and incorporating design elements into an operation that account for events that seem impossible, but are actually of very low probability, is a good industrial practice that hardens the process or facility against disaster.

Share and discuss your concerns and plans with process instrumentation and control specialists, leveraging your own knowledge and experience with their resources to develop a better solution.

Electronic Pressure Switches

electronic pressure switch NEMA 4 enclosure
Electronic pressure switch in NEMA 4 enclosure.
Image courtesy of Ashcroft
A pressure switch is a device that detects and responds to fluid pressure. Pressure switches use a variety of sensing elements such as diaphragms, bellows, bourdon tubes, pistons or electronic sensors. In all but the electronic sensor versions, the movement of the sensing element, caused by pressure fluctuation, is transferred to a set of electrical contacts to open or close a circuit. Electronic pressure switches utilize a sensor signal and circuitry to control switch activation.

The normal status of a switch is the resting state with stimulation. A pressure switch will be in its normal state when low or minimum pressure is applied. For a pressure switch, normal status is any fluid pressure below the trip threshold of the switch.

One of the earliest and most common designs of pressure switch was the bourdon tube pressure sensor with a mercury switch. When pressure is applied, the bourdon tube flexes enough to tilt the glass bulb of the mercury switch so that the mercury flows over the electrical contacts, thus completing the circuit. the glass bulb tilts far enough to cause the mercury to fall against a pair of electrodes, thus completing an electrical circuit. Many of these pressure switches were sold on steam boilers. While they became a de facto standard, they were sensitive to vibration and breakage of the mercury bulb.

Pressure switches using micro type electrical switches and force-balanced pressure sensors is another common design. The force provided by the pressure-sensing element against a mechanical spring is balanced until one overcomes the other. The tension on the spring may be adjusted to set the tripping point, thus providing an adjustable setpoint.

One of the criteria of any pressure switch is the deadband or (reset pressure differential). This setting determines the amount of pressure change required to re-set the switch to its normal state after it has tripped. The differential pressure setting of a pressure switch should not to be confused with a differential pressure switch, which actually operates on the difference in pressure between two separate pressure input ports.

Electronic pressure switches provide some features which generally are considered advantageous to mechanical designs.
  • No mechanical linkage between sensing element and switch, all electronic.
  • High cycle rates are possible.
  • High levels of accuracy and repeatability.
  • Some models have additional features, analog output, digital display, auxiliary switches, and more.
When selecting pressure switches you must consider the electrical requirements (volts, amps, AC or DC), the area classification (hazardous, non-hazardous, general purpose, water-tight), pressure sensing range, body materials that will be exposed to ambient contaminants, and wetted materials.

Whatever your pressure measurement application, share your challenges with a fluid measurement and control specialist, combining your own knowledge and experience with their product application expertise to develop effective solutions.

Thermal Dispersion Flow Switches For Pump Protection

thermal dispersion flow switch pump protection
Thermal dispersion flow switches have advantages
when applied for pump protection
Image courtesy Magnetrol
Good practice for installing industrial pumps calls for inclusion of protective devices to assure that the pump is not exposed to conditions beyond its design intent. Monitoring liquid flow is a useful method for determining if a pump is operating within a safe range.

There are numerous methods of verifying flow in piping connected to a  pump. Magnetrol, globally recognized manufacturer of flow and level measurement technologies, offers up their assessment of various pump protection measures and a recommendation for what they consider an advantageous choice for flow measurement in a pump protection application.

Magentrol's white paper is included below, and you can share your flow and level measurement challenges with application experts for help in developing effective solutions.


Ultrasonic Clamp-On Flowmeter with SIL 2 Rating

clamp on ultrasonic flowmeter with control unit SIL 2 rating
FLUXUS F/G70X and F/G80X series meters
Courtesy Flexim
Measuring the flow quantity of gases and liquids is a common industrial processing task. There are numerous technologies available for measuring fluid flow, each with its own set of advantages and drawbacks for any particular application. Some of the technologies and methods have been in use for a very long time, with recent enhancements provided by electronics or smart sensor designs.

Ultrasonic flow measurement devices employ a comparatively recent technology to measure gaseous or liquid flow. Whether the transit time differential or Doppler method is utilized, ultrasonic flow meters have a distinctive characteristic in that they can be deployed in a form factor that does not require insertion into the fluid. A common installation method is to clamp the ultrasonic transducer assembly onto the exterior of a pipe. This makes the technology attractive for applications that involve adding a flow measurement point to an existing piping system.

Flexim, a globally recognized leader in ultrasonic flow measurement, offers a number of permanent and portable units for measuring liquid and gaseous flow rates. Some of their instruments have been certified as SIL 2 capable, along with a host of other third party certifications. The product range includes simple and accurate instruments designed for general industrial use, and extends to multi-beam units intended for applications, such as custody transfer of fluids, that require the highest accuracy and overall performance levels.

Share your flow measurement challenges and requirements with instrumentation specialists, combining your own process knowledge and experience with their product application expertise to develop effective solutions.


Switching Inductive Loads With Relays and Solid State Devices in Process Control

control panel interior process automation and control panel
Switching devices must be properly protected for longevity
We connect a lot of black boxes together in our control systems, not really knowing what goes on inside. There is a basic understanding of function, but maybe not enough knowledge to thoroughly assess all aspects of integrating a device into a train of control system components. We range from novice to seasoned expert, so Acromag, manufacturer and global supplier of I/O devices for process control, has provided a useful application note regarding the protection of devices employed to switch inductive loads.

The application paper provides a good explanation of what an inductive load is, and how it can impact the performance and longevity of a switching device. The document further explains how to offset the potentially damaging impact of an inductive load on a connected switching device, with specific examples and recommendations on how to put the protective measures in place. It is useful information.

The paper is provided below. Share your I/O and other process measurement and control challenges with application specialists, combining your own process knowledge with their product application expertise to develop effective solutions.


Selecting the Right Temperature, Pressure, or Differential Pressure Switch

industrial temperature switch pressure switch differential pressure switch
Temperature, pressure, and differential pressure switches come in a wide variety of configurations
Courtesy Ashcroft
Industrial process control applications present dynamic and varied requirements for measuring, monitoring and control. Each point calls for specific evaluation of the information needed from the process point for use in monitoring process performance, or control to be applied at the process point to regulate an outcome. Sometimes, a continuous analog signal is needed to provide indication across a range of values. Other times, it is only necessary to have notification of, or take action when, a certain temperature or pressure related event occurs. In those cases, a simple and reliable device can adequately meet the project requirements.

Temperature, pressure, and differential pressure switches connect to a process and change their switch position when a setpoint condition is reached. The are simple to understand, easy to install, low in cost, and require little maintenance of attention. The switches are available in an extensive array of configurations, with options to fill out almost any application requirement.

Ashcroft, global supplier of temperature and pressure switches, has produced a simplified guide that enables a designer or specifier to quickly focus their search on the right product. It is provided below for your use. Alternately, you can always share your process measurement and control requirements and challenges with product application specialists, combining your own process knowledge with their product expertise to develop effective solutions.



M.S. Jacobs & Associates - Equipment Engineers

aerial view wastewater treatment plant settling ponds
Wastewater treatment is one of the many industrial sectors
served by M.S. Jacobs
M.S. Jacobs and Associates has been a leading manufacturer's representative and distributor of industrial instrumentation and controls since 1945. Expanding from its original focus on the steel industry, MS Jacobs services and supplies products in all major industrial markets, including power generation, chemical processing, pulp and paper, oil and gas production, water and wastewater treatment, and nuclear power generation.

The company's longevity and dedication to the industrial market has resulted in a broad offering of superior quality products for flow, level, pressure, and temperature measurement, as well as filtration products and valves. Everyone at MS Jacobs takes pride in the company's ability to solve tough applications and provide exceptional customer service with a team of trained outside sales engineers and inside customer service representatives.

MS Jacobs' Pittsburgh service center provides instrument calibration and repair for MSJ's complete line of products, as well as those of other manufacturers. The company carries factory authorization for repair of numerous manufacturers' industrial process instrumentation products. The service center also provides custom assembly of instruments and other gear to meet customer requirements. Completed assemblies are tested and certified prior to shipment.

Reach out to MS Jacobs & Associates for the products and services that move your process instrumentation and control projects toward a successful completion.



Process Control - Annunciator Panel as Cyber Defense Measure

Process control annunciator panel
Standalone Annunciator Panel
Ronan Engineering Company
There are numerous applications for annunciator panels, stations, and equipment throughout the various industrial markets. One such application, arising and growing with the connectivity of industrial control systems to the internet, is in the cyber defense arena.

Industrial control systems are increasingly internet connected, making them vulnerable to cyber attack. There was a time when all that was necessary for plant or operation security was installing a perimeter fence around the property and posting a guard at the gate. Our industrial control systems are now subject to mischief or malicious attack from locations and parties unknowable and worldwide.

Do you know of ICS-CERT? If involved in industrial control, you should. It is the Industrial Control Systems Cyber Emergency Response Team, a part of the Department of Homeland Security that provides operational capabilities to defend control systems against cyber threats. You can follow them on Twitter, @ICS-CERT, and monitor the vulnerabilities and threats that they discover in the industrial control sphere. New items are added almost daily, naming specific vulnerabilities uncovered in named systems and equipment. Chances are that you will discover some of the equipment in your plant listed.

Annunicator systems and equipment can be employed as an isolated "watcher", monitoring process performance and providing alerts when conditions exceed specified limits.
A major impact of a potential cyber attack scenario is that, as operator, you can no longer fully trust what your software based internet connected control system is telling you, or whether it is doing everything it should and only those things that it should. An annunciator system, isolated from the primary control system and the internet, monitoring critical process conditions, incorporates a substantial level of safety against cyber attack.

There is more to be learned. Browse the document included below for a detailed visual demonstrating the set up of annunciators that can be isolated from your network. Share your process control challenges with specialists, and combine your process and facility knowledge with their product application expertise to develop effective solutions. And start following @ICS-CERT on Twitter and build your awareness and knowledge of industrial control cyber threats. 

Analynk Wireless For Process Control Connectivity



Analynk Wireless is an innovative designer and supplier of wireless instrumentation for the process control industry. Their instruments and equipment have been successfully implemented in numerous applications for temperature measurements, 4-20 mA bridges, discrete inputs/outputs, pulse inputs, lighting and pump controls. Analynk's products are used in both hazardous and non-hazardous locations. Watch the short video for a animated overview of Analynk products and capabilities.

Share your wireless connectivity challenges with product specialists. Combining your process knowledge with their expertise with produce effective solutions.

Don't Ignore the Simple Solution for Flow Measurement

flow indicator flow meter with fluid observation window
Flow indicator also permits visual
inspection of fluid
Courtesy ERDCO Engineering Corp.
For process control and commercial or industrial applications, there are numerous methods of flow measurement from which to choose. Technologies range from very simple applications of physical principles to deployment of very specialized electronics and sensors. The available range of accuracy, response, and cost is quite broad, with a general expectation that higher cost will deliver better performance and accuracy.

Making the best instrument selection for a flow measurement application should include an assessment of what the operators really need in order to safely and effectively run the process or perform the task related to the measurement of fluid flow. Installing instrumentation with capabilities far beyond what is required is almost certainly a waste of financial resources, but may also have an unexpected impact on operators. Through the generation of data that, while accurate, does not provide any actionable information about process condition, operators can be misled, similar to the occurrence of a false or nuisance alarm. Some applications call for high accuracy, some do not. Define your informational needs and select instruments that will meet those needs.

There is a large array of applications that can be satisfied with simpler, less costly measurement technology. These devices often employ turbines or vanes to produce an indication of flow rate. Incorporated into some of the instruments is a means to visually observe the flowing liquid to verify color and clarity. Simple devices sometimes are intended only to indicate the presence of fluid flow, and whether the flow rate is high or low. Configurations are available that allow insertion into lines under pressure (hot tap) through a full port ball valve. Other variants with combinations of features and capabilities abound.

The selection range is enormous, so define your minimum needs first, then search for a compatible product. Your search can be enhanced by contacting an instrumentation specialist. Combining your process expertise with their broad product knowledge will produce effective solutions.


Level Measurement: Comparing Displacer Transmitters and Differential Pressure Transmitters

diagram of displacer level transmitter for process measurement and control
Electronic Displacer Transmitter
Courtesy Magnetrol
Liquid level measurement is ubiquitous throughout industrial fluid processing operations. Whether via direct or inferential means, the fluid level data point is an integral part of operational and safety plans for an installation.

Magnetrol, a globally recognized leader in the design and manufacture of level measurement instrumentation, has produced a comparison of displacer transmitters and differential pressure transmitters applied to liquid level measurement.

What is a displacer transmitter?


Displacer transmitters are considered a direct means of level measurement.

Quoted from Magnetrol website page on displacer transmitters...
Electronic displacer level transmitter technology operates by detecting changes in buoyancy force caused by liquid level change. These forces act upon the spring supported displacer causing vertical motion of the core within a linear variable differential transformer.
As the core position changes with liquid level, voltages are induced across the secondary windings of the LVDT. These signals are processed in the electronic circuitry and used to control the current in the 4-20 mA current loop. The enclosing tube acts as a static isolation barrier between the LVDT and the process media.

 How does a differential pressure transmitter measure liquid level?


Liquid level can be inferred through the measure of the pressure generated by the column of liquid in a tank or vessel. The measurement device must be calibrated for the specific gravity of the measured media in order to attain reasonably accurate results. There are a number of installation arrangements of differential pressure transmitters that will accommodate tanks open to atmosphere, closed pressurized tanks, and more.

The comparison is included below and provides some interesting points to consider. Share your level measurement application challenges with a product application specialist. Combining your process experience and knowledge with their product application expertise will produce the best solutions for your process measurement needs.



SVF Flow Controls Explains Surface Roughness for Valves Intended for Special Applications

Socketed and flanged ball valves for industrial process control
Vales utillized in industrial processes
can require special materials or finishes.
Fluid control operations can sometimes require special materials of construction or finishes for piping and specialties, like valves. A segment of the industrial valve manufacturing sector specializes in providing fluid control valves with coatings, surface finish, and materials of construction suitable for the requirements of applications not well serviced by more common constructions.

One manufacturer, SVF Flow Controls, has published a short article explaining some of the basics about surface finish. The article defines surface finish and goes on to describe some of the methods employed to achieve various levels of surface roughness and texture. The article, included below in its entirety, is short and informative.

Share your specialty valve applications with product experts. The combination of your process expertise and their product knowledge will produce the most effective solutions.


High Density Signal Conditioning Modules Offer Bluetooth® Configuration of I/O Ranges and Alarms

Miniature high density signal conditioner module for process control I/O
The microBlox™ signal conditioners for high density I/O configuration
Acromag, a globally recognized manufacturer of signal conditioning modules and related equipment, announced a new product release earlier this month. The microBlox™ line of signal conditioners provides a wide array of useful features, broad range of I/O signal compatibility, and a very compact high density footprint.

Here is an excerpt from the Acromag newsletter from June 6, 2016.

A full line of microBlox™ isolated signal conditioning modules are now available from Acromag. Offering over 175 models, microBlox uB modules can safely interface a wide variety of voltage, current, temperature, frequency, and other field signals with a ±5V or 0-5V DC output to host measurement & control systems. Users can select modules with fixed ranges or wireless configuration via Bluetooth® wireless technology on an Android™ or iOS® mobile device. Acromag’s free AgilityTM app for smartphones and tablets simplifies setting custom I/O ranges and optional alarm functions. The app can also display input signal values and create sharable trend charts. uB modules snap securely into compact backpanels (no screws) in any mix with 4, 8 or 16-channel capacities. With 1500Vac peak (350Vdc continuous) channel-to-channel and field-to-host isolation, the hot-swappable modules are ideal to front-end data acquisition systems or Acromag remote I/O for communication to Ethernet, Modbus, or Profibus networks. High performance is assured with up to 0.05% accuracy and 130dB noise rejection. Prices start at just $90 per module.
 
“Advanced microcontroller and wireless technologies enable microBlox modules to bring greater flexibility and signal processing capabilities into such a small, economical package.” stated Robert Greenfield, Acromag’s marketing & sales director.
The microBlox module’s small size (1.11" x 1.65" x 0.4") and channel-by-channel scalability is ideal for embedded or portable applications such as test stands, defense systems, and process control applications. Well-suited for use in harsh industrial environments, the over-molded modules resist shock, dirt, and moisture with dependable operation from -40 to 85°C. Hazardous location UL/cUL Class 1 Div 2 and ATEX Zone 2 approvals are also available.
Accessories include a selection of backpanels with slots to insert 4, 8, or 16 modules. Fuse clips hold the modules securely without screws for easy insertion/removal. The backpanels support surface or DIN rail mounting and include CJC for use with temperature input modules. Blue LEDs indicate modules that are ready for Bluetooth wireless technology communication. Connections are provided for a 5V power source or a 10-32Vdc supply when used with the plug-in 5V power module. A DB25 header facilitates a single cable connection to interface all uB I/O signals directly to the host data acquisition system.
 A consolidated catalog describing the new microBlox™  signal conditioners is included below. Share your signal conditioning and I/O challenges with a a product specialist. Combining your process knowledge with their product application expertise will produce the best solutions.




MS Jacobs & Associates Offers Line of Corrosion Resistant Industrial Fluid Handling Process Control Equipment

corrosion resistant plastic industrial fluid handling flow meter
TKS/TKP/TKM Series PVC + PP Paddle Wheel Flow Meters
Courtesy Icon Process Controls Ltd.
MS Jacobs & Associates now represents ICON Process Controls in Pennsylvania, New York, and West Virginia. ICON specializes in corrosion resistant industrial fluid handling process control equipment, offering industry the most complete line of all plastic instrumentation products supported by the largest inventory in North America. Markets include Municipal and Industrial Water & Waste-Water Treatment, Bulk Chemicals, Steel Processing, Metal Finishing, Chemical Dosing Skids, and Food & Beverage.

The company's products complement and expand MS Jacobs' already extensive array of process measurement and control instruments and equipment. The ICON line includes devices for measuring and controlling flow, level, pressure, and temperature. Their unique all plastic construction makes the ICON equipment and instruments particularly well suited to the harshest industrial environments.

For information about the complete line of corrosion resistant industrial fluid handling process control equipment from ICON, reach out to the process control experts at MS Jacobs. Share you process control challenges and combine your process knowledge with their product application expertise to formulate the best solutions.