Friday, December 2, 2016

Installing a Clamp-on Ultrasonic Flow Meter

industrial process ultrasonic flowmeter clamp on style
Ultrasonic flow meter with clamp on sensor
Courtesy Flexim
Ultrasonic flow meters are utilized throughout the fluid processing industries, as well as for compressed air and energy monitoring. The non-invasive nature of the sensor installation couples with sufficient accuracy and low maintenance requirements to give this technology a competitive edge for many applications.

Producing consistently accurate results with an ultrasonic flow meter depends heavily on a proper installation. Flexim, a globally recognized leader in the manufacture of ultrasonic flow meters, provides us with a video that steps through the installation process, with recommendations and guidance along the way.

Flexim manufactures a full range of ultrasonic flow measurement equipment and instruments for industrial and commercial applications. Share your flow measurement challenges with process measurement experts, combining your process knowledge with their product application expertise to develop effective solutions.

Tuesday, November 15, 2016

Monitoring Generator Sets in Standby Mode Increases Reliability

Remote Monitoring of Electric Generator in Standy Mode
Electrtic generators used as backup power sources play a critical role in maintaining operations at many facilities. They may be automatically test run periodically, but still sit idle for extended times. Continuous remote monitoring of equipment condition can reduce the risk of a failed start.

Acromag, a globally recognized manufacturer of signal conditioning equipment, has authored an application note outlining the extent of remote monitoring that should be employed and how to accomplish it.

The application note is included below. Share your process signal conditioning and transmitting challenges with product specialists, combining your process knowledge with their product application expertise to develop effective solutions.


Wednesday, November 9, 2016

In-Line Thermal Flow Meters

in-line thermal dispersion flow meters
In-line thermal dispersion flow meters
Thermal Instrument Company
Thermal dispersion mass flow meters provide an accurate means of mass flow measurement with no moving parts and little or no encroachment on the media flow path. There are a number of different configurations to be found among various manufacturers, but all function in basically the same manner.

Two sensors are exposed to the heat transferring effect of the flowing media. When the media composition is known, the mass flow can be calculated using the meter reading and the pipe cross sectional area. One of the flow meter sensors is heated, the other is allowed to follow the media temperature as a reference. The heat dispersion from the heated sensor is measured and used to calculate mass flow.

Some positive attributes of thermal dispersion flow meters:

  • In-line and insertion configurations available to accommodate very small to large pipe sizes
  • Rugged Construction – Stainless Steel with available protective coatings and other specialty metals
  • No moving parts
  • Measure liquid or gas in general, sanitary, and ultra pure applications
  • Measurement not adversely impacted by changes in pressure or temperature
  • Wide range of process connections 
  • In-line versions provide unobstructed flow path
  • Wide turndown suitable for extended flow range
  • Back up sensors for extended life
  • Sensors do not contact process media
  • Flow and total flow measured
  • 4-20 mA output interfaces easily with other instruments and equipment
Share all your process measurement challenges and requirements with product application specialists, combining your process knowledge with their product application expertise to develop effective solutions.

Tuesday, November 1, 2016

Foot Valves: Basic, Hidden, Essential

industrial valve foot valve suction valve
Foot valve showing inlet filter screen
Colton Industries
A foot valve is a purpose specific check valve. Designed for immersion in a well, tank, or other liquid containing vessel, it serves as a one-way inlet valve on piping leading to the suction side of a pump. Foot valves and their connected piping will extend downward from the pump suction elevation. The purpose of the valve is to maintain prime on the pump by preventing the water column in the suction line from collapsing, due to gravity, and draining all the liquid from the suction side of the pump system.

For industrial applications, there are numerous versions of foot valves available in varying sizes, capacities and materials of construction. The function of the valve is simple, so the key selection criteria can be focused on features that will contribute to longevity and reduce or eliminate any maintenance burden.

The data sheet below provides some good illustrations of a foot valve and how it is installed. Share your fluid processing and control challenges with application experts, combining your process and facility knowledge with their product application expertise to develop effective solutions.

Wednesday, October 26, 2016

Pneumatic Volume Booster Function

pneumatic volume booster
Pneumatic Volume Booster
Fairchild
A volume booster is used in a pneumatic control system to relay a low flow signal as one with greater flow volume. The common configuration is to provide a 1:1 ratio between the input and output pressure, keeping the input and output signals the same pressure. Products are available that deliver different ratios.

The general purpose of a volume booster is to provide a relay between a system with low flow volume and one with higher volume requirements. A typical example is a pneumatic actuator. The flow available through the pneumatic signal line may be insufficient to deliver the response rate desired from the pneumatic actuator. A volume booster, with control over an independent air supply, solves this challenge with increased flow volume at the same pressure as the control signal.

Volume boosters are simple in operation. The input signal applies force to one side of a diaphragm, the output pressure to the other. An imbalance between the two applied pressures will cause the diaphragm to move, changing the position of the valve and the outlet pressure until the two forces are again in balance. Little maintenance is required when the units are properly installed and supply air is of good quality.

The unit pictured is from Fairchild, a well recognized manufacturer of industrial pneumatic components, and provides a 1:1 ratio. There are some key points in the selection process, so reach out to a product specialist with your pneumatic system challenges and requirements. Combining your process and facility knowledge with their product application expertise will produce effective solutions.


Monday, October 17, 2016

Applying Process Refractometers in Sugar Cane Processing

Sugar cane and refined white sugar
Refractometers measure concentration of dissolved solids
Sugar cane, after harvesting, requires processing within a limited time window to avoid sugar loss by inversion to glucose and fructose. The traditional two stage process, milling and processing, may be combined in a single modern production facility. Process refractometers can be found in both operations, making an optical measurement of a solution’s refractive index used to determine the concentration of dissolved solids.

(This is a repost of a blog originally appearing on the Electron Machine Corp. blog, 08/2016)

To achieve high quality liquid and crystal sugars and contain production cost, refractometers are employed to deliver accurate in-line Brix and other measurements in the cane sugar refining and milling processes.

Specific uses of refractometers in sugar production are:
  • Product flow adaptation to evaporator capacity to achieve energy savings.
  • Extraction process optimization, minimizing the use of water that will need to be removed at the evaporator.
  • Separation column feed juice control to adjust concentration to match capacity.
  • Quality assurance check on liquid bulk sugar and molasses.
  • Vacuum pan automatic and accurate seeding.
  • Monitor supersaturation over complete strike of crystallization.
Share your refractometry challenges and applications with the product application specialists for access to the best product selection resources.

Wednesday, October 12, 2016

Conductivity Controller For Boiler Applications

Multivariable water quality controller
Conductivity controller for boiler applications
Lakewood Instruments
Modern boilers using the Rankine cycle require feedwater and make-up feedwater quality maintained within certain limits with respect to alkalinity, conductivity, and other factors in order to maintain boiler operating efficiency and minimize maintenance requirements.

Controlling the feedwater quality can be accomplished with the addition of controlled amounts of the right chemicals to regulate various aspects of water quality. Another method is to purge, or blowdown, the boiler in a measured fashion that allows fresh feedwater to replace overly contaminated water. Filtration, which I generally deem to include ion exchange, reverse osmosis, and mechanical filtration, is a third method. All deal specifically with a limited scope of contaminates that have an impact on boiler operation and longevity.

Boiler blowdown can be used to limit the amount of total dissolved solids in the boiler drum water. As water boils, the dissolved solids in the water concentrate in the remaining liquid water. Blowdown purges a portion (or all) of this water, allowing the addition of water, presumably treated, with substantially lower total dissolved solids.

Boiler blowdown has an energy cost, since the replacement water must be heated to the design condition. It follows that executing this procedure should be undertaken when necessary, but not more frequently. A conductivity monitor and controller can accomplish properly timed blowdown cycles. The system consists of a conductivity sensor and a control unit that provides all the necessary functionality in a single integrated package. A data sheet is included below for one such unit from Lakewood Instruments.

Share your boiler operation challenges with an instrumentation specialist an explore how a properly instrumented steam system can provide operational savings and extended time between failure.