Monday, November 23, 2015

Industrial I/O Applications Compilation Provides Answers

Process Measurement and Control Input and Output Devices
Process Measurement and Control I/O Devices
Courtesy Acromag
Process measurement always presents two basic challenges, derive a measured value of the process condition, then transmit or deliver that value to a recording or decision making device. Your knowledge and ingenuity applied to the design and implementation of these measurement and transmission functions are the key to how effectively your control system will function. Acromag, a world class manufacturer of signal conditioning equipment and industrial I/O devices, has produced a compilation of applications that illustrate some creative and best practices for establishing effective connections between control and measurement devices. The applications are drawn from defense, power generation, and manufacturing, but the knowledge shared can be broadly applied to many industries.

Look through the applications and you will find something of value. You can always contact a product and application specialist to discuss your process measurement and control challenges and requirements. Combining their product application expertise with your process knowledge will generate the best solutions.



Tuesday, November 17, 2015

Rotameters For Flow Measurement - Selecting the Right One

Industrial rotameter flow meters
Industrial Rotameter Flow Meters
Courtesy King Instrument
Applied extensively in industrial process measurement and control, a rotameter is an instrument that uses a float of given density to establish, for any measurable flow rate, an equilibrium position within the fluid stream where the force of the flowing fluid equals the force of gravity. Let's break that down a little. A rotameter has a tapered tube with a float inside. As the measured fluid flows upward through the tube, it pushes the float upward along the length of the tube. As the float rises in the tube, the cross sectional area of the tube increases and more fluid can bypass around the float. At some point, the upward force of the fluid flow acting on the float will balance with the downward force of gravity. The position of the float along the length of the tube correlates with a certain flow rate when certain properties of the fluid are known. Flow rate scale graduations on the tube can be read by the operator.

Rotameters are very specific to each flow measurement application. It's important that you know your fluid properties, ambient conditions, connection and readability specifications. 

Start with these selection parameters:

  • Desired flow rate range
  • Fluid specific gravity
  • Ambient temperature
  • Operating and maximum pressure
  • Line size
  • Connection type
  • Connection orientation
  • With or without a valve
  • Material requirements to accommodate fluid
  • Scale units of measure. Smallest scale divisions needed.
For each application, it's advisable to work closely with a sales engineer to gather all the needed information and coordinate the product selection process.

Here are some things to consider for potential rotameter applications:


  • Simple design and operation provide a modest cost solution.
  • No external power is required for operation. Inherent fluid properties and gravity are used to measure flow rate.
  • Clear glass used for the measuring tube is highly resistant to thermal shock and corrosion.
  • Instrument orientation must be vertical, with fluid flowing upward.
  • Scale graduations are accurate for a given substance at a given temperature, making the devices application specific.
  • Operation of the rotameter may be impacted by changes in the viscosity of the fluid. Consult with a product and application specialist to explore your application.
  • Direct flow indication provides resolution that may not be as good as some other flow measurement methods.
  • Visual reading of the scale is subject to uncertainty due to float oscillation, parallax, and location on the scale.
  • Make sure the fluid turbidity, or another fluid characteristic will not obscure the visibility of the float.

Consult with a product specialist about your flow measurement application. A combination of your process knowledge and their product expertise will produce the best solution.


Monday, November 9, 2015

Analynk Wireless Updated Website

Analynk Wireless company logo
Analynk Wireless has a new website
One of the manufacturers represented by MS Jacobs & Associates, Analynk Wireless, has redesigned and published an updated website. The new site provides access to features, model configurations and datasheets for their entire range of industrial process control and measurement products. Analynk's product line complements those of other manufacturers in the MS Jacobs portfolio of industrial instrumentation and process control products. MSJ employs the Analynk products, often in combination with products of their other manufacturer lines, to provide complete packaged process control solutions for their customers.

Analynk Wireless encompasses three groups of products:

  • Hazalynk® wireless products for hazardous areas, including explosion proof antennas and hazardous area access point enclosures.
  • Sensalynk® single and multi-point wireless transmitters, receivers, and repeaters for industrial wireless networking.
  • Telmar® transmitters, tachometers, signal alarms, power supplies, indicators and meters for process measurement and control.
Take a look at the new Analynk website. Discuss your process improvement ideas with product application specialists and develop a plan to generate better outcomes.

Tuesday, November 3, 2015

Application Suitability of Ultrasonic Flowmeters

Ultrasonic Liquid Flow Meter
Ultrasonic Liquid Flow Measurement System
Courtesy Flexim America
Industrial process control frequently requires the accurate measurement of fluid flow. There are several widely applied methods for measuring flow, each having particular advantages which may apply to a specific application.

Ultrasonic flow meters measure flow indirectly by calculating transit time of a sound wave through, or reflecting from, a flowing fluid. The velocity of the fluid has an impact on the transit time, from which a flow rate can be calculated. Attributes of ultrasonic flow measurement that may determine suitability for a particular application include:

  • Transducers can be clamped on exterior pipe surface where measurement is needed.
  • Non intrusive measurement technology prevents contact between media and measuring elements.
  • No significant pressure drop associated with measuring device installation.
  • Reduced leak potential.
  • No moving parts.
  • Comparatively higher cost than some other technologies.
  • Fluid characteristics must be well known for proper application.
  • Pipe cross section must be completely filled by media to acquire accurate flow measurement.
Learn more about this process measurement and control technology in the product detail sheet below. Consult with a product application specialist for more detailed product information and tips on how to best apply ultrasonic flow meters to your process.