Showing posts with label MS Jacobs. Show all posts
Showing posts with label MS Jacobs. Show all posts

M.S. Jacobs & Associates - Equipment Engineers

aerial view wastewater treatment plant settling ponds
Wastewater treatment is one of the many industrial sectors
served by M.S. Jacobs
M.S. Jacobs and Associates has been a leading manufacturer's representative and distributor of industrial instrumentation and controls since 1945. Expanding from its original focus on the steel industry, MS Jacobs services and supplies products in all major industrial markets, including power generation, chemical processing, pulp and paper, oil and gas production, water and wastewater treatment, and nuclear power generation.

The company's longevity and dedication to the industrial market has resulted in a broad offering of superior quality products for flow, level, pressure, and temperature measurement, as well as filtration products and valves. Everyone at MS Jacobs takes pride in the company's ability to solve tough applications and provide exceptional customer service with a team of trained outside sales engineers and inside customer service representatives.

MS Jacobs' Pittsburgh service center provides instrument calibration and repair for MSJ's complete line of products, as well as those of other manufacturers. The company carries factory authorization for repair of numerous manufacturers' industrial process instrumentation products. The service center also provides custom assembly of instruments and other gear to meet customer requirements. Completed assemblies are tested and certified prior to shipment.

Reach out to MS Jacobs & Associates for the products and services that move your process instrumentation and control projects toward a successful completion.



Selecting Single-ended vs. Differential Voltage Measurement for Process Measurement - Part 2 of 2

programmable logic controller with input and output devices for process control
Selecting the proper signal conditioning equipment
is essential to maintaining process operation
This second part of a two part series of white papers provides discussion of the differences in function of differential and single-ended voltage measurement for industrial process measurement and control. Part One focused primarily on single-ended voltage measurement, how it differs from differential, and in what application context it can be best applied. This white paper, provided below, delves into differential voltage measurement and how it may be advantageous, even necessary, in a range of application scenarios.

The papers are produced by Acromag, Inc., a globally recognized manufacturer of signal conditioning equipment. Information about Acromag's extensive product offering is available from M.S. Jacobs & Associates, as well as technical details and application assistance.



Selecting Single-ended vs. Differential Voltage Measurement for Process Measurement - Part 1 of 2

DIN rail mounted process measurement signal conditioning module
Acromag manufactures an extensive array
of signal conditioning modules
Process control requires process measurement. The industry provides a enormous array of measuring devices for almost every conceivable process parameter. Selecting the right signal conditioner that will convert a current process state into a signal to be transmitted to and utilized by a controller can be challenging. One area of confusion centers around whether to use differential or single-ended voltage measurement.

Acromag, Inc., a globally recognized manufacturer of signal conditioning equipment for industrial process measurement and control, has provided a white paper that helps sort out reasons behind a beneficial selection of single-ended or differential voltage measurement devices. Explanation of how each functions and tips on selection criteria for an application are also provided. The technicality of the language is at a level that is comprehensible to most, but retains that exciting engineering edge for the purists among us. The first part of two (Part Two), provided below, focuses mostly on single-ended measurement. Part two covers differential.

Top flight assistance with your process measurement and control application challenges is available from M.S. Jacobs & Associates.



Get To Know MS Jacobs & Associates for Industrial Process Control Instruments and Equipment

Electric power generation plant
MS Jacobs serves the electric power generation industry,
as well as chemical, oil and gas, water and wastewater
M.S. Jacobs and Associates has been a leading manufacturer's representative and distributor of industrial instrumentation and controls since 1945.  Expanding from its original focus on the steel industry, MS Jacobs services and supplies products in all major industrial markets, including power generation, chemical processing, pulp and paper, oil and gas production, water and wastewater treatment, and nuclear power generation.

The company's longevity and dedication to the industrial market has resulted in a broad offering of superior quality products for flow, level, pressure, and temperature measurement, as well as filtration products and valves. Everyone at MS Jacobs takes pride in the company's ability to solve tough applications and provide exceptional customer service with a team of trained outside sales engineers and inside customer service representatives.

MS Jacobs' Pittsburgh service center provides instrument calibration and repair for MSJ's complete line of products, as well as those of other manufacturers. The company carries factory authorization for repair of numerous manufacturers' industrial process instrumentation products. The service center also provides custom assembly of instruments and other gear to meet customer requirements. Completed assemblies are tested and certified prior to shipment.

Reach out to MS Jacobs & Associates for the products and services that move your process instrumentation and control projects toward a successful completion.


Knowledge Base and Selection Guide For Magnetic Level Indicators

Orion Instruments Magnetic Level Indicators
Magnetic Level Indicators
Courtesy Orion Instruments
Industrial process control frequently involves the storage of liquid in vessels or tanks. Continuous and accurate indication of liquid level within the tank is an essential data point for safety and process management. While there are a number of methods and instrument types utilized to provide tank level measurement, the instrument of choice is often a magnetic level indicator, also referred to as a magnetic level gauge. Its use for providing level indication has a number of positive attributes:
  • Construction that is resistant to breakage.
  • Measuring indicators, switches, and transmitters mounted externally, without contacting the medium being measured.
  • Maintenance free operation. No regular cleaning needed.
  • Readable level indication from greater distance than glass sight gauges.
  • Magnetic level indicators can accommodate greater fluid level ranges without the need for multiple instruments.
Orion Instruments, a Magnetrol company and industry leader, has produced a comprehensive guide to magnetic level gauges, switches, transmitters, and related products. It delivers experts and newcomers an understandable and clear description of the technology and principals of operation behind magnetic level gauges and instruments. The guide also assists the reader in properly specifying and selecting the best instrument configuration for an application. A table of contents at the front of the document helps readers to quickly find the information they need.

Take a couple minutes to roll through the document and you are likely to find new and useful application tips and product information. Any questions about magnetic level indicators or your process measurement and control applications can be clearly addressed by a product specialist.



Filtration Yields Returns By Protecting Fluid Process Lines and Equipment

Dual basket strainer with changeover valve
Duplex Basket Strainer With Diverter Valve
Courtesy Eaton Filtration
Most people think of "industrial" equipment as super heavy duty, virtually indestructible. Those of us responsible for operating and maintaining industrial process equipment recognize that is not the case. Even the most formidable appearing equipment can be crippled if not protected from the insidious effects of particulates.

There are numerous strategies for mediating the impact of particulates on industrial fluid process equipment and systems. The best solutions will be customized for each process, with consideration given to:
  • Maximum particle diameter threshold: At some level, particulates may be small enough to preclude damage to the system. Above the threshold level, removal of the particles brings some benefit to process operation.
  • Pressure drop associated with any mitigation techniques: Assuming that mitigation will involve the addition of components to the fluid system, minimizing the added pressure drop is advantageous.
  • Overall volume of particulate matter to be removed: Most often, mitigation equipment traps and retains particulate matter. The retaining capacity of the unit must match the particulate production rate of the process. Be mindful that certain events, such as routine maintenance or cleaning of process equipment, may produce surges of particulates in some types of systems.
  • Location of the filtration equipment: Filtration units must be placed in the process flow upstream of the equipment or system portion to be protected. An additional consideration is a provision for maintenance through placement in a convenient, easily accessible location.
  • Filtration equipment materials of construction: The filtration gear must be fabricated of materials compatible with the process media.
I have provided a data sheet below with cutaway illustrations and detailed performance data for one type of filtration unit. This particular equipment is manufactured by the filtration division of Eaton and features a duplex strainer basket arrangement with a diverter valve. The process fluid flows through one strainer, with the other clean and ready to be brought on line when the active basket becomes clogged. When the active basket becomes clogged and pressure drop excessive, the operator moves a lever to divert the flow to the second basket, sealing off the now clogged basket area so that it can be opened and cleaned. This design provides for uninterrupted process operation.

Browse the provided data sheet. You will likely pick up something you did not already know, or get a quick refresh of your technical knowledge. The duplex basket strainer is one type in a wide variety of filtration products available for every conceivable process application. Share your challenges with a product specialist. Combining your process knowledge and experience with their thorough product application expertise will generate great solutions.



Analynk Wireless Updated Website

Analynk Wireless company logo
Analynk Wireless has a new website
One of the manufacturers represented by MS Jacobs & Associates, Analynk Wireless, has redesigned and published an updated website. The new site provides access to features, model configurations and datasheets for their entire range of industrial process control and measurement products. Analynk's product line complements those of other manufacturers in the MS Jacobs portfolio of industrial instrumentation and process control products. MSJ employs the Analynk products, often in combination with products of their other manufacturer lines, to provide complete packaged process control solutions for their customers.

Analynk Wireless encompasses three groups of products:

  • Hazalynk® wireless products for hazardous areas, including explosion proof antennas and hazardous area access point enclosures.
  • Sensalynk® single and multi-point wireless transmitters, receivers, and repeaters for industrial wireless networking.
  • Telmar® transmitters, tachometers, signal alarms, power supplies, indicators and meters for process measurement and control.
Take a look at the new Analynk website. Discuss your process improvement ideas with product application specialists and develop a plan to generate better outcomes.

Application Suitability of Ultrasonic Flowmeters

Ultrasonic Liquid Flow Meter
Ultrasonic Liquid Flow Measurement System
Courtesy Flexim America
Industrial process control frequently requires the accurate measurement of fluid flow. There are several widely applied methods for measuring flow, each having particular advantages which may apply to a specific application.

Ultrasonic flow meters measure flow indirectly by calculating transit time of a sound wave through, or reflecting from, a flowing fluid. The velocity of the fluid has an impact on the transit time, from which a flow rate can be calculated. Attributes of ultrasonic flow measurement that may determine suitability for a particular application include:

  • Transducers can be clamped on exterior pipe surface where measurement is needed.
  • Non intrusive measurement technology prevents contact between media and measuring elements.
  • No significant pressure drop associated with measuring device installation.
  • Reduced leak potential.
  • No moving parts.
  • Comparatively higher cost than some other technologies.
  • Fluid characteristics must be well known for proper application.
  • Pipe cross section must be completely filled by media to acquire accurate flow measurement.
Learn more about this process measurement and control technology in the product detail sheet below. Consult with a product application specialist for more detailed product information and tips on how to best apply ultrasonic flow meters to your process.




Avoid Process Downtime With Five Device Protection Considerations

Industrial Process Instruments
Industrial Process Instruments
Industrial process control is everywhere. Sometimes it is dangerous or complex. In other cases it may be relatively mundane. In all industrial processes, though, maintaining operation is key. Stakeholders rely on the process output and look to the designers, engineers, and operators to deliver, in many cases, uninterrupted performance. The world is a place of many uncertainties, some of which can impact your process in undesirable ways. While it's not practical to design or build to accommodate every possible adverse event, application of experience and good judgement in a few areas may significantly shorten the list of things that can negatively impact your process.

Process control is achieved through the measurement of various conditions and application of regulated adjustments to the process inputs to deliver a desired output. Process variable measurement serves as the input to the control system. In the industrial sphere, it is common to see devices used for the measurement and transmission of temperature, pressure, flow, mass, level, and electrical parameters like voltage, current, capacitance and more. Regardless of what is being measured, there are three common characteristics:

  • Device - A combination of a sensor and a translator that together detect some physical condition of the process and produce an output signal that can be correlated to the process condition. 
  • Location - The device will have a location that is dictated by the process construction and arrangement. Device locations have a tendency to be inflexible.
  • Signal transmission path - Unless the control element is integral to, or adjacent to, the measurement device, there will be some path over which the measurement signal must travel to reach an associated control element. 

Looking at these three elements for each measurement point, consider the five risk categories below in evaluating what you can do to safeguard your process measurement instrumentation. It's advisable to open a conversation with an experienced application specialist and freely discuss your concerns. Gathering additional input from various experienced sources will help you determine how extensive your protective measures should be to deliver a balance between cost and the probability of certain adverse events.

  • Local Weather: There is local weather data available for almost every place on the planet. Take the time to procure reliable data and examine the distribution of temperature, humidity, precipitation, and wind conditions throughout all seasons. Clearly, if portions of the process are located outdoors, extreme local weather conditions will need to be accommodated. Even if your process is located indoors, local weather information is important if the process is to operate continuously. Consider whether an indoor process must continue to operate, even if the building HVAC system fails and indoor conditions begin to be impacted by outdoor conditions. Also, depending upon the design of the building climate control system, changing outdoor conditions can have a noticeable and possibly significant impact on the indoor air conditions.
  • Process Generated Conditions: There may be specific aspects of your process that produce occurrences of vibration, pressure spike, electrical interference, or a host of other aberrations that may affect the proper operation of measurement devices. Know your process....really know it. Protect instrument sensors from potentially damaging transients and other process conditions that can be reasonably expected to occur. Device location relative to sources of electrical interference, elevated temperature, vibration, shock, and other transient conditions should be considered.
  • Security: Your design goal should be to achieve a very high level of certainty that the signals generated by the measurement devices are uninterrupted and reflect the actual process conditions. There are two cases I always consider for security. The first is cyber, which applies in the case of a process measurement device network connection. Necessary steps should be taken to thwart an attempt to breach the network and detect unusual conditions that might indicate an invader's attempt to manipulate the process. My second case is related to device access by those without proper knowledge, training, or permission. Protection from these threats will likely involve a combination of physical barriers and procedures.
  • Physical Contact: Industrial settings are, well, industrial. Large, heavy, irregular, unwieldy, and sharp things can sometimes be moved through areas occupied by process measurement gear. Technicians with carts, tools, and materials frequently pass through process areas to do their work. Protecting equipment and instruments from damaging contact pays dividends for the life of the installation. Consider, in your design and layout, the proximity of instruments to areas of traffic. If applicable, also consider areas overhead. The level of protection will need to be balanced with the need for access by qualified individuals for service, maintenance, calibration, and observation, as applicable.
  • Moisture: Electronics are a mainstay of modern measurement instrumentation. Clearly, liquid moisture must be kept from contact with electronic circuits. Vaporous moisture will find a path to the internals of your electronic devices. This vapor, which is present in considerable levels in almost every indoor and outdoor environment, can condense when the right conditions are present. It is imperative that enclosures, conduit, boxes, fittings must be provided with barriers to moisture entry and/or a reliable means to automatically discharge accumulated liquid moisture before damage occurs.
There is much to think about in the realm of device protection. Balancing the costs of protection, the impact of protective measures on the ability to service and operate the process, and the risk involved with process failure or shutdown requires the application of technical expertise, experience, and sound practical judgement. Draw information and opinion from multiple sources, including sales engineers. Combine their product application knowledge with your process expertise to make good decisions.


Application Advantages of Intrinsically Safe Barriers

2-Wire Transmitter in Hazardous Area With Intrinsic Safety Barrier
Courtesy Ronan Engineering Company

Industrial process measurement and control operations have few boundaries. Land, sea, air, light, dark, dry, wet, hot, cold, indoor, and outdoor environments. Did I mention potentially explosive? Well, there is that, too.

If your experience was anything like mine, it is likely that your first project involving a hazardous area really drove home the fact that you are working at a very serious endeavor. In addition to quality problems or downtime resulting from equipment failure, now you add "the place blows up" to the list of possible outcomes. It's sobering, and not the type of situation where you have the option of real world testing. You need to be right the first time. Every remotely possible source of ignition must be considered and rendered harmless.

One way to provide the necessary level of safety is through the use of explosion proof enclosures, conduit, fittings, and other devices. By their nature, these items are designed to contain an internal explosion and provide for the expansion and cooling of the ignited gases into the surrounding atmosphere. The expansion cools the hot gas to a temperature safe for venting from the enclosure into the hazardous area without causing an ignition.

There is a good solution for measurement and control circuits requiring only low power levels. Intrinsically safe circuit designs employ barriers that allow power limited connections between devices in a hazardous zone and those in a non-hazardous zone. Intrinsic safety relies on the limiting of available energy in the system to a level that will not ignite a hazardous atmosphere (explosive gas or dust). Without significant energy storage, and ensuring that only low voltages and currents enter the hazardous area, intrinsically safe design removes the circuit as a possible ignition source. Where it is possible to utilize an intrinsically safe circuit, there are some advantages over using an explosion proof design.

  • Absence of explosion proof enclosures enhances the accessibility of system components.
  • Personnel safety is increased with low voltage operation.
  • Standard wiring methods and materials may be used. No explosion proof conduit, boxes, fittings.
  • Calibration and maintenance can be performed with the system in operation.
  • Special skill levels required by an explosion proof design are not required with intrinsically safe design.
A primary device in an intrinsically safe circuit will be the barrier. The intrinsic safety barrier forms the border between the hazardous and non-hazardous areas. There are other design considerations, all of which you should discuss with knowledgeable application specialists. I have included a document below from Ronan Engineering Company, a manufacturer of intrinsic safety barriers. It provides some additional useful information, including a listing of the many I/O applications where the barriers can be employed.



Thermal Mass Flow Meters - Mature Technology With Modern Application

Thermal mass flow meters
Configurations of Thermal Mass Flow Meters
Courtesy Thermal Instrument Co.
Thermal mass flow measurement technology has been used in industrial process measurement and control applications for many years. The technology measures the amount of heat required to maintain a sensor at a constant reference temperature, offsetting the cooling effect of the fluid flow over the sensor. The technology is well suited for installations requiring the measurement of low pressure gases where the fluid components are known and remain constant. Thermal mass flow measurement is also employed effectively in a number of other scenarios.


Potential advantages of thermal mass flow technology for industrial process measurement and control:

  • Provides true mass flow reading using a single instrument
  • Not significantly affected by fluid pressure or temperature
  • Moderate comparative cost
  • No moving parts
  • Minimal restriction of flow introduced by sensor

Typical applications for thermal mass flow meters:

  • Landfill gas outflow measurement
  • Compressed air systems
  • Gas distribution in semi-conductor manufacturing
  • Beverage carbonation
  • Tablet coating and compression in pharmaceutical industry
  • Flare gas measurement in oil and gas industry
  • Natural gas flow to boilers, furnaces, and other consuming equipment
Thermal mass flow sensors have attributes making them very suitable for a family of applications. Like all measurement technologies, there are also areas of caution in their application. Any measurement technology must be properly applied in order to obtain reliable results. Talk to a sales engineer about your flow measurement ideas and applications. Combining your process expertise with the knowledge of a product application specialist will produce good results.



Are You Well Grounded on Grounding? - Part 3

Drawing symbols for Electrical Ground
Electrical Drawing Symbols for Ground
Welcome to the third and final part of this series on electrical grounding for equipment and instruments. Part One and Part Two can be found as previous posts to this blog, and I hope you read them too. Those initial parts provided practical knowledge about equipment grounding and personnel protection in a format understandable to anyone. Those of us more deeply involved with electrical matters likely know someone that could benefit from these articles and I urge you to share.

The white paper that I have included below was produced by the folks at Acromag, a world class manufacturer of signal conditioners and other industrial I/O devices. They have done a fantastic job of presenting technical subject matter in a compact and very understandable form. The subjects covered in the series include:
  • Ground as protection
  • How a ground fault circuit interrupter (GFCI) works
  • Ground as a voltage stabilizer and transient limiter
  • Tips on improving safety and signal integrity
  • The importance of circuit grounding
  • Description of the US AC power system and its use of earth ground
This third installment includes a section entitled "Some Basic Ground Rules For Wired Equipment" which lists out an array of useful tips for connecting wired signals to devices, and more.

Product specialists are always on hand to discuss and solve your process measurement and control issues. Combine the process knowledge of the on site stakeholder with the product and application expertise of the professional sales engineer to produce the best outcomes.



Are You Well Grounded on Grounding? - Part 2

Electrical drawing symbols for ground
Drawing Symbols for Ground
Electricity, like many beneficial trappings of modern society, is both beneficial and dangerous. Protecting users of equipment and appliances from the potentially harmful impact of electric shock is a socially accepted mandate that has been codified everywhere in the developed world.

Acromag, a manufacturer of input and output devices for industrial control systems, has produced a three part series of white papers that provide readable, non-technical descriptions of various aspects of electrical grounding and its relationship to safety and operational integrity. The subjects covered in the three part series include:

  • Ground as protection
  • How a ground fault circuit interrupter (GFCI) works
  • Ground as a voltage stabilizer and transient limiter
  • Tips on improving safety and signal integrity
  • The importance of circuit grounding
  • Description of the US AC power system and its use of earth ground
You can find the initial installment on our previous blog post, and the third installment follows this blog post. All three parts are recommended reading for anyone, but stakeholders in process measurement and control will benefit from refreshing and enhancing their understanding of this important subject. It is a quick read and presents technical subject matter in a way that can be comprehended by anyone.

Product and application specialists are always eager to hear about your application issues and questions. Never hesitate to contact them. Your process knowledge, combined with the product and application familiarity of a professional sales engineer, will generate good outcomes.



Are You Well Grounded on Grounding? - Part 1

Ground Symbols
Some Drawing Symbols Used For Ground
Grounding of electrical equipment and electronic instrumentation is an aspect of project design and implementation that sometimes gets taken for granted. To say that proper electrical grounding is important is an understatement because, without it, certain safety aspects that we rely upon will simply not work. Additionally, and often more confounding, is the intermittent, unexpected, or bizarre behavior of electronic measurement and control devices when proper electrical grounding is not established.

I came across a series of white papers written by some knowledgeable people at Acromag, a manufacturer of industrial input and output devices (industrial I/O). The comprehensive three part series covers best practices involved in the grounding of electrical equipment and electronic instrumentation, in language understandable to a reader of any technical level. The subject matter includes:

  • Ground as protection
  • How a ground fault circuit interrupter (GFCI) works
  • Ground as a voltage stabilizer and transient limiter
  • Tips on improving safety and signal integrity
  • The importance of circuit grounding
  • Description of the US AC power system and its use of earth ground

In my reading of the white papers, I gathered a few things I did not know, refreshed a few I had forgotten, and reinforced my understanding of the topic. There is something in the documents for everyone, and a small investment in time will yield some benefit. All stakeholders in industrial process measurement and control, from the factory floor to the executive office, should have the basic understanding contained in these papers.

Part One of the three part series is below. Part Two and Part Three will be published simultaneously in posts following this one. You can get any level of application assistance you need from the sales engineers that specialize in industrial process equipment, measurement, and controls. Their product knowledge and technical resources, combined with your process mastery, will yield the best solution to any issue.



Big Signal Loop? Consider Using a Splitter.

Acromag Industrial Signal Isolated Transmitter
Industrial Signal Transmitters
Courtesy Acromag
Industrial process measurement and control requires the transmission of signals from point to point with no significant distortion. Even with the growing prevalence of wireless signal transmission, over-wire transmission of signals is still a primary means of connecting one device to another.
In the cabled process measurement and control world, the 4 to 20 milliampere signal is generally considered the standard for transmitting analog control and measurement signals over any distance.
There is an immense array of instrumentation and controllers available for use with 4-20 ma signals, so expertise in routing and delivering those signals should be part of your process M&C skill set.

Like just about everything else, routing 4-20 ma signals presents its own set of challenges that require some thought and planning to overcome. Electrical interference is always a concern and must be prevented from impacting the operation of measurement and control devices. Additionally, there must be sufficient power in the signal loop to accommodate the resistance load of connected devices. There are other considerations, but I'm going to focus on these two.

One scenario that can present significant issues is multiple devices requiring connection to the same signal, but with great distance between them. A simple solution can be implemented using an isolated signal splitter.

Features of these units making them an attractive, single box, solution:


  • One 4-20 ma input channel for the measuring or controlling device.
  • The input signal is retransmitted as identical isolated 4-20 ma signals
  • Galvanic isolation from input to output
  • Isolation between channels for safety and increased noise immunity. Fault in one output channel does not impact the operation of the other channels.
  • Reliable operation in industrial environments, with protection from RFI, EMI, ESD, and surges.
  • Low radiated emissions in accordance with CE requirements. 
  • DIN-rail mounting of the unit
  • Plug-in terminal blocks
If you have a very long signal loop, connecting multiple devices, consider breaking the devices into two groups that may allow for a substantially shorter cable length for each group. Connect each group to one of the isolated outputs of the splitter, giving each group of instruments the identical signal without the risks or impractically of an excessively long cable run.

There are other devices available that may combine special characteristics that solve your signal transmission challenges. Contact a product specialist and discuss your existing or anticipated project requirements. I continually urge engineers to take their process expertise, combine it with the extensive product knowledge of a professional sales engineer, and produce the best possible outcome.




Delivering Electric Power to Remote Sites

Thermoelectric Generator
Thermoelectric Generator
Courtesy Gentherm
Industrial companies accomplish some amazing feats in some very inaccessible and remote places. If you are in the natural resource business, you go where the resources are to extract them from the earth. The telecommunications industry locates equipment where needed to forge links and deliver signals. Environmental monitoring, navigation aids, buoys, lighthouses, and airstrips can all be situated in areas without grid power. Often, these installations are unattended, and require continuous reliable electric power to operate. When there is no grid to which the installation can be connected, a challenge arises regarding how to provide electric power to the site equipment.

There are several possible solutions for providing remote power, each with its own set of operating attributes which may make it more or less suitable for any particular application. When considering a remote power generator, you should include thermoelectric generators on your list of prospects.

Thermoelectric generators convert heat directly into electricity using a fuel source for heat, a hermetically sealed thermopile, cooling fins, and no moving parts. These generators are a positive and cost effective solution for remote power requirements, having operational and cost benefits over engine driven generators, batteries and solar sources for many applications.

The short document below provides an overview of thermoelectric generator operation and application. Talk to a product specialist about your need to power a remote site. A thermoelectric generator may be an option you had not considered, but may prove to be the best solution.


Practical Considerations for Thermocouple Selection

Industrial Thermocouples, Fixed Bend Bayonet Type
Industrial Thermocouples, Fixed Bend Bayonet Type
Courtesy Wika
It would be difficult to chart a career course in the industrial process control field without being exposed to thermocouples. They are the ubiquitous basic temperature measuring tools with which all process engineers and operators should be familiar. Knowing how thermocouples work, how to test them, is essential. Sooner or later, though, you may be in charge of selecting a thermocouple for a new application. With no existing part in place for you to copy, what are the selection criteria you should consider for your process?

Thermocouple sensor assemblies are available with almost countless feature combinations that empower vendors to provide a product for every application, but make specifying a complete unit for your application quite a task. Let's wade through some of the options available and see what kind of impact each may have on temperature measurement performance.

  • Thermocouple Type: Thermocouples are created using two dissimilar metals. Various metal combinations produce differing temperature ranges and accuracy. Types have standard metal combinations and are designated with capital letters, such as T, J, and K. Generally, avoid selecting a type that exhibits your anticipated measurements near the extremes for the type. Accuracy varies among thermocouple types, so make sure the accuracy of the selected type will be suitable.
  • NIST Traceability: This may be required for your application. The finished thermocouple assembly is tested and compared to a known standard. The error value between the thermocouple shipped to you and the standard are recorded  and certified. The certified sensor assembly will be specially tagged for reference to the standard.
  • Junction Type: If your sensor will be contained within a tube or sheath, the manner in which the actual sensor junction is arranged is important. The junction can be grounded to the sheath, electrically insulated from the sheath (ungrounded), or protruded from the sheath (exposed). If your process environment may subject the sensor assembly to stray voltages (EMF), it may be wise to stay away from a grounded junction, even though it provides fast response to a change in temperature. Exposed junctions provide very quick response, but are subjected to potential damage or corrosion from surrounding elements. The ungrounded junction provides protection within the enclosing sheath, with a slower response time than either of the other two junction types. When using ungrounded junctions, keep the mass and diameter of the sheath as small as might be practical to avoid overdamping the sensor response.
  • Probe Sheath Material: This applies to assemblies installed in a tube or sheath which houses and protects the sensor junction and may provide some means of mounting. Material selections include a variety of stainless steel types, polymers, and metals with coatings of corrosion resistant material to suit many applications. Make sure the sheath material, including any coatings, will withstand the anticipated temperature exposure range.
  • Probe Configuration: Sheath tube diameter and length can be customized, along with provisions for bends in the tube. Remember that as you increase the mass around the junction, or increase the distance of the junction from the point of measurement, the response time will tend to increase.
  • Wika Industrial Thermocouples, Various Termination Options
    Industrial Thermocouples, Showing Various Termination Options
    Courtesy Wika
  • Fittings and Terminations: There are innumerable possibilities for mounting fittings and wiring terminations. Give consideration to ease of access for service. How will the assembly be replaced if it fails? Are vibration, moisture, or other environmental factors a concern? What type of cable or lead wires would be best suited for the application?
Your options are so numerous, it is advisable to consult a manufacturer's sales engineer for assistance in specifying the right configuration for your application. Their product knowledge and application experience, combined with your understanding of the process requirements, will produce a positive outcome in the selection procedure.



Expanded Hazardous Area Wireless Access Point Enclosure From Analynk

Analynk Wireless LLC Hazardous Area Access Point Enclosure
Hazardous Area Access Point Enclosure
Courtesy Analynk Wireless
As an engineer, I always welcome products that are well conceived, showing through their design and feature set that the developers really understand what I need to accomplish. Implementing industrial wireless communications in hazardous areas presents particular challenges to engineers responsible for achieving project goals of robust communications and safety. Analynk Wireless has developed several lines of products specifically targeted at wireless communications in hazardous areas, exhibiting a recognition of the needs of those responsible for providing industrial wireless communications in these specialized areas

Today, I am writing about Hazardous Area Access Point Enclosures, but recently have also written about two other Analynk products with which anyone involved with industrial wireless communications should become familiar. Check out New Antenna for Hazardous Area Wireless Communication and Cellular Device Data Links for Industrial Process Monitoring and Control (long titles, but short easily read articles).

Access point enclosures for hazardous areas must be specifically designed to accommodate the access point product selected by the customer....Cisco, Symbol, Meru, Aruba, Hewlett Packard, Motorola, and others. The matching enclosure for an access point will have:

  • Custom mounting bracket mating to the customer's access point.
  • UL listed enclosure for subject hazardous area, including antenna locations coordinated with access point device arrangement.
  • UL listed explosion proof antenna, one or more as need for the subject access point.
  • All hardware, mounting plate, and RF cables to simplify installation and startup
A product specialist can help you with the latest available information. Contact them to discuss your application and how to best fulfill your hazardous area wireless communication requirements.

New Antenna for Hazardous Area Wireless Communication - Updated With Data Sheet

Industrial Wireless Communications - Hazardous Areas
Hazardous Area Antenna and Enclosure
Courtesy Analynk Wireless
Wireless communication has seen increasing prevalence in the industrial process measurement and control field for a number of years. Vendors, in response to customers' desire to incorporate the technology across an ever widening array of application scenarios, continue to develop and release new products and technologies that expand the potential for industrial wireless communication. One company, Analynk Wireless, is now shipping a new version of their patented wireless antenna for hazardous areas. We published an article last week about their cellular device data links.


Analynk Antenna
for Hazardous Areas
Courtesy Analynk Wireless
The newest Analynk Hazardous Area Antenna provides remote data links for customers using Iridium, GPS, and GLONASS. This new product adds to the company's already expansive line of wireless communication products specifically designed for industrial application, providing wireless data links to mobile or very remote locations not always accessible to other communication networks.

Analynk's antennas are operable across a very wide temperature range and provide substantial impact resistance, signal output, and ratings for hazardous environments.

Contact a product specialist about the Analynk Wireless products and discuss the potential benefits of incorporating or expanding wireless data links of all types into your operation.







Cellular Device Data Links for Industrial Process Monitoring and Control

Wireless Transmitter and Receiver
Courtesy Analynk Wireless, LLC
Industrial process measurement and control is not restricted to the factory floor and fixed installations any longer. Increasingly, there are remote, as well as mobile, installations with a need for remote control command execution, or producing useful and valuable data that can be put to use by operational, safety, and financial stakeholders. Industrial process operators, as well as other levels of the business enterprise, can now have real time access to information that can be used for business and industrial process improvement.

The advent of wireless communications made gathering data from, and issuing control commands to, remote and mobile installations possible. A continuing path of vendor innovation and improvement has:

  • Improved wireless technology reliability in the industrial setting.
  • Expanded industrial wireless communications applicability.
  • Simplified the implementation of a wireless communications strategy in an industrial process measurement and control setting.
  • Reduced the cost and timeline associated with installation of a wireless solution.

Analynk Wireless, a designer and manufacturer of wireless devices and instrumentation for the process control industry, is adding newly designed cellular devices to their already extensive industrial wireless communications offering.  The deployed devices will feature cellular/GPS/GPRS connectivity to allow worldwide transmission and receipt of data via cellular and internet, providing remote monitoring and control through the use of additional connected devices.

The applications and opportunities for process improvement through wireless data gathering are vast. The cost and simplicity of these systems make them an option to be considered. More information is available from product specialists, with whom you can discuss your application ideas.