RTD or Thermocouple for Your Temperature Measurement Application?

RTD or thermocouple temperature sensor assembly
Temperature Sensor Assembly
Wika
Proper temperature sensor selection is key to getting useful and accurate data for maintaining control of a process. There are two main types of temperature sensors employed for industrial applications, thermocouple and resistance temperature detector (RTD). Each has its own set of features that might make it an advantageous choice for a particular application.

Thermocouples consist of a junction formed with dissimilar conductors. The contact point of the conductors generates a small voltage that is related to the temperature of the junction. There are a number of metals used for the conductors, with different combinations used to produce an array of temperature ranges and accuracy. A defining characteristic of thermocouples is the need to use extension wire of the same type as the junction wires, in order to assure proper function and accuracy.
Here are some generalized thermocouple characteristics.

  • Various conductor combinations can provide a wide range of operable temperatures (-200°C to +2300°C).
  • Sensor accuracy can deteriorate over time.
  • Sensors are comparatively less expensive than RTD.
  • Stability of sensor output is not as good as RTD.
  • Sensor response is fast due to low mass.
  • Assemblies are generally rugged and not prone to damage from vibration and moderate mechanical shock.
  • Sensor tip is the measuring point.
  • Reference junction is required for correct measurement.
  • No external power is required.
  • Matching extension wire is needed.
  • Sensor design allows for small diameter assemblies.
RTD sensors are comprised of very fine wire from a range of specialty types, coiled within a protective probe. Temperature measurement is accomplished by measuring the resistance in the coil. The resistance will correspond to a known temperature. Some generalized RTD attributes:
  • Sensor provides good measurement accuracy, superior to thermocouple.
  • Operating temperature range (-200° to +850°C) is less than that of thermocouple.
  • Sensor exhibits long term stability.
  • Response to process change can be slow.
  • Excitation current source is required for operation.
  • Copper extension wire can be used to connect sensor to instruments.
  • Sensors can exhibit a degree of self-heating error.
  • Resistance coil makes assemblies less rugged than thermocouples.
  • Cost is comparatively higher
Each industrial process control application will present its own set of challenges regarding vibration, temperature range, required response time, accuracy, and more. Share your process temperature measurement requirements and challenges with a process control instrumentation specialist, combining your process knowledge with their product application expertise to develop the most effective solution.


Installing Heat Tape - Instructional Video

BriskHeat manufactures a broad range of heating equipment and componentry. Their heat tape is routinely applied across many applications involving heating of gases, liquids, and solids. The video included below provides simple and well illustrated guidance for selecting and properly installing heat tape to provide for safety and longevity.

Heat tape is flexible in its application, inexpensive, and easy to use. The video shows the three basic types, along with their application limitations and basic selection criteria. Instruction is provided on how to properly prepare the installation surface. The tools and materials needed for installation are also shown.

Share your process, pipe, and valve heating challenges with application specialists. Combining your process or application knowledge with their product expertise will produce a good match between product and application.

BriskHeat Joins the M.S. Jacobs Lineup

industrial heaters
M.S. Jacobs is pleased to announce its new representation agreement with BriskHeat Corporation. The industrial heaters manufactured by BriskHeat complement many of the other quality products handled by M.S. Jacobs.

BriskHeat manufactures a broad line of heaters, insulators, and controls for almost every industrial application.

  • Cloth Heating Jackets and Insulators
  • Heating Tapes
  • Heating Cable
  • Laboratory Heaters and Equipment
  • Etched Foil Heaters
  • Silicone Rubber Heaters
  • Drum Heaters
  • Tote Tank / IBC Heaters
  • Gas Cylinder Warmers
  • Enclosure Heaters
  • Hopper Heating Systems
  • Personal Comfort Heating Solutions
  • Hazardous-Area Heaters
  • Plastic Bending Heaters
  • Resistance Wire
  • Temperature Controllers
  • Temperature Controllers for Outdoor Use
  • Insulators
  • Heaters and Controls with Canadian Approvals
  • Composite Curing Solutions
Share your industrial and process heating requirements with the product specialists at M.S. Jacobs & Associates. Combining your process expertise with their product knowledge will produce effective solutions.

Analynk Wireless For Process Control Connectivity



Analynk Wireless is an innovative designer and supplier of wireless instrumentation for the process control industry. Their instruments and equipment have been successfully implemented in numerous applications for temperature measurements, 4-20 mA bridges, discrete inputs/outputs, pulse inputs, lighting and pump controls. Analynk's products are used in both hazardous and non-hazardous locations. Watch the short video for a animated overview of Analynk products and capabilities.

Share your wireless connectivity challenges with product specialists. Combining your process knowledge with their expertise with produce effective solutions.

Gentherm GPT Provides Turnkey Remote Power

thermoelectric generators
Thermoelectric Generators, part of  a remote power system
There are many industrial operations and processes that operate outside the confines of a factory building. Some even operate outside the confines of what most consider "civilization". Sometimes, if you need electric power, you have to generate your own.

Gentherm Global Power Technologies specializes in providing equipment and complete systems to produce electric power at remote sites. Their signature product line is the thermoelectric generator, or TEG. It uses a solid state thermopile and gas fired heaters to generate DC current. The technology is especially useful at sites where gas is naturally present. As a turnkey systems provider, Gentherm GPT will design complete systems, customized and configured for each particular installation. Here is an example of a fuel gas conditioning system provided for an offshore oil rig, designed specifically to address an issue at the site.

GPT's power generation products are well suited for a wide array of applications.

  • Oil, gas, product, or water pipelines
  • Well sites
  • Offshore platforms
  • Telecommunication sites
  • Well monitoring and automation
  • Security and surveillance
  • Navigational aids
  • Communication systems
For your remote power generation projects, consider a thermoelectric generator. Contact a product specialist and share your requirements. Combining your project knowledge with their product expertise will produce an effective solution.




Don't Ignore the Simple Solution for Flow Measurement

flow indicator flow meter with fluid observation window
Flow indicator also permits visual
inspection of fluid
Courtesy ERDCO Engineering Corp.
For process control and commercial or industrial applications, there are numerous methods of flow measurement from which to choose. Technologies range from very simple applications of physical principles to deployment of very specialized electronics and sensors. The available range of accuracy, response, and cost is quite broad, with a general expectation that higher cost will deliver better performance and accuracy.

Making the best instrument selection for a flow measurement application should include an assessment of what the operators really need in order to safely and effectively run the process or perform the task related to the measurement of fluid flow. Installing instrumentation with capabilities far beyond what is required is almost certainly a waste of financial resources, but may also have an unexpected impact on operators. Through the generation of data that, while accurate, does not provide any actionable information about process condition, operators can be misled, similar to the occurrence of a false or nuisance alarm. Some applications call for high accuracy, some do not. Define your informational needs and select instruments that will meet those needs.

There is a large array of applications that can be satisfied with simpler, less costly measurement technology. These devices often employ turbines or vanes to produce an indication of flow rate. Incorporated into some of the instruments is a means to visually observe the flowing liquid to verify color and clarity. Simple devices sometimes are intended only to indicate the presence of fluid flow, and whether the flow rate is high or low. Configurations are available that allow insertion into lines under pressure (hot tap) through a full port ball valve. Other variants with combinations of features and capabilities abound.

The selection range is enormous, so define your minimum needs first, then search for a compatible product. Your search can be enhanced by contacting an instrumentation specialist. Combining your process expertise with their broad product knowledge will produce effective solutions.


Hayward Announces New Electric Valve Actuator Line

electric valve actuators with manual override
New HRS Series Electric Valve Actuators
Courtesy Hayward Flow Control
Hayward Flow Control issued a press release in early June announcing the introduction of its HRS Series of quarter turn electric valve actuators. The actuators complement the company's companion lines of fluid process products, including thermoplastic valves, strainers, filters, controls, bulkhead fittings and tank accessories, and corrosion resistant pumps.

The new HRS line provides practical features and benefits to users.
  • Product torque range from 300 in-lb to 177,000 in-lb
  • Aluminum housing with powder coat
  • Double square drive socket, ISO5211 compliant mounting
  • On/Off or Proportional Control  with 2-10 vdc or 4-20 ma inputs and outputs
  • NEMA 4/4X/IP67 enclosure rating
  • Range of available AC and DC voltages
  • Integrated local control station
  • Visual position indicators
  • CSA Certified, UL439
  • Two Year Warranty
There are numerous variants that can be configured using base models and available options. For more detail, contact a product specialist. Share your fluid process control challenges with them, combining your process knowledge with their product application expertise to produce the most effective solutions.


Tank Overfill Protection - Level Measurement Technology Resources for Best Results

crude oil storage tanks with overfill protection level measurement
Crude oil storage tanks, a beneficiary of overfill protection
Industrial liquid processing often includes tanks or other vessels for the storage or combining of product components, raw materials, or finished product. Regardless of the nature of the liquid, overfill and spillage are of concern due to economic loss, downtime, and the creation of hazardous conditions. Good practice calls for detection of overfill conditions in a reliable manner which will provide operators notice of the condition in time to avoid spillage.

Magnetrol®, a globally recognized leader in the field of liquid level measurement, has created a set of resources to help customers understand the need for overfill protection and properly establish a protocol. Different industries and products will have varying levels of risk or hazard, thus different governing standards. The basic benefit to overfill protection is the same throughout...whatever is in the tank should be contained. Included below is one of several resources provided by Magnetrol® to address the issue of overfill protection. You can get the entire set by contacting level control specialists.

There are a number of technologies employed in the measurement of liquid level. Each has its own set of attributes that may prove advantageous for a particular application. Share your level measurement and control challenges with a product application specialist. Combining your process expertise with their product application knowledge will produce effective solutions.



Level Measurement: Comparing Displacer Transmitters and Differential Pressure Transmitters

diagram of displacer level transmitter for process measurement and control
Electronic Displacer Transmitter
Courtesy Magnetrol
Liquid level measurement is ubiquitous throughout industrial fluid processing operations. Whether via direct or inferential means, the fluid level data point is an integral part of operational and safety plans for an installation.

Magnetrol, a globally recognized leader in the design and manufacture of level measurement instrumentation, has produced a comparison of displacer transmitters and differential pressure transmitters applied to liquid level measurement.

What is a displacer transmitter?


Displacer transmitters are considered a direct means of level measurement.

Quoted from Magnetrol website page on displacer transmitters...
Electronic displacer level transmitter technology operates by detecting changes in buoyancy force caused by liquid level change. These forces act upon the spring supported displacer causing vertical motion of the core within a linear variable differential transformer.
As the core position changes with liquid level, voltages are induced across the secondary windings of the LVDT. These signals are processed in the electronic circuitry and used to control the current in the 4-20 mA current loop. The enclosing tube acts as a static isolation barrier between the LVDT and the process media.

 How does a differential pressure transmitter measure liquid level?


Liquid level can be inferred through the measure of the pressure generated by the column of liquid in a tank or vessel. The measurement device must be calibrated for the specific gravity of the measured media in order to attain reasonably accurate results. There are a number of installation arrangements of differential pressure transmitters that will accommodate tanks open to atmosphere, closed pressurized tanks, and more.

The comparison is included below and provides some interesting points to consider. Share your level measurement application challenges with a product application specialist. Combining your process experience and knowledge with their product application expertise will produce the best solutions for your process measurement needs.



SVF Flow Controls Explains Surface Roughness for Valves Intended for Special Applications

Socketed and flanged ball valves for industrial process control
Vales utillized in industrial processes
can require special materials or finishes.
Fluid control operations can sometimes require special materials of construction or finishes for piping and specialties, like valves. A segment of the industrial valve manufacturing sector specializes in providing fluid control valves with coatings, surface finish, and materials of construction suitable for the requirements of applications not well serviced by more common constructions.

One manufacturer, SVF Flow Controls, has published a short article explaining some of the basics about surface finish. The article defines surface finish and goes on to describe some of the methods employed to achieve various levels of surface roughness and texture. The article, included below in its entirety, is short and informative.

Share your specialty valve applications with product experts. The combination of your process expertise and their product knowledge will produce the most effective solutions.


High Density Signal Conditioning Modules Offer Bluetooth® Configuration of I/O Ranges and Alarms

Miniature high density signal conditioner module for process control I/O
The microBlox™ signal conditioners for high density I/O configuration
Acromag, a globally recognized manufacturer of signal conditioning modules and related equipment, announced a new product release earlier this month. The microBlox™ line of signal conditioners provides a wide array of useful features, broad range of I/O signal compatibility, and a very compact high density footprint.

Here is an excerpt from the Acromag newsletter from June 6, 2016.

A full line of microBlox™ isolated signal conditioning modules are now available from Acromag. Offering over 175 models, microBlox uB modules can safely interface a wide variety of voltage, current, temperature, frequency, and other field signals with a ±5V or 0-5V DC output to host measurement & control systems. Users can select modules with fixed ranges or wireless configuration via Bluetooth® wireless technology on an Android™ or iOS® mobile device. Acromag’s free AgilityTM app for smartphones and tablets simplifies setting custom I/O ranges and optional alarm functions. The app can also display input signal values and create sharable trend charts. uB modules snap securely into compact backpanels (no screws) in any mix with 4, 8 or 16-channel capacities. With 1500Vac peak (350Vdc continuous) channel-to-channel and field-to-host isolation, the hot-swappable modules are ideal to front-end data acquisition systems or Acromag remote I/O for communication to Ethernet, Modbus, or Profibus networks. High performance is assured with up to 0.05% accuracy and 130dB noise rejection. Prices start at just $90 per module.
 
“Advanced microcontroller and wireless technologies enable microBlox modules to bring greater flexibility and signal processing capabilities into such a small, economical package.” stated Robert Greenfield, Acromag’s marketing & sales director.
The microBlox module’s small size (1.11" x 1.65" x 0.4") and channel-by-channel scalability is ideal for embedded or portable applications such as test stands, defense systems, and process control applications. Well-suited for use in harsh industrial environments, the over-molded modules resist shock, dirt, and moisture with dependable operation from -40 to 85°C. Hazardous location UL/cUL Class 1 Div 2 and ATEX Zone 2 approvals are also available.
Accessories include a selection of backpanels with slots to insert 4, 8, or 16 modules. Fuse clips hold the modules securely without screws for easy insertion/removal. The backpanels support surface or DIN rail mounting and include CJC for use with temperature input modules. Blue LEDs indicate modules that are ready for Bluetooth wireless technology communication. Connections are provided for a 5V power source or a 10-32Vdc supply when used with the plug-in 5V power module. A DB25 header facilitates a single cable connection to interface all uB I/O signals directly to the host data acquisition system.
 A consolidated catalog describing the new microBlox™  signal conditioners is included below. Share your signal conditioning and I/O challenges with a a product specialist. Combining your process knowledge with their product application expertise will produce the best solutions.




MS Jacobs & Associates Offers Line of Corrosion Resistant Industrial Fluid Handling Process Control Equipment

corrosion resistant plastic industrial fluid handling flow meter
TKS/TKP/TKM Series PVC + PP Paddle Wheel Flow Meters
Courtesy Icon Process Controls Ltd.
MS Jacobs & Associates now represents ICON Process Controls in Pennsylvania, New York, and West Virginia. ICON specializes in corrosion resistant industrial fluid handling process control equipment, offering industry the most complete line of all plastic instrumentation products supported by the largest inventory in North America. Markets include Municipal and Industrial Water & Waste-Water Treatment, Bulk Chemicals, Steel Processing, Metal Finishing, Chemical Dosing Skids, and Food & Beverage.

The company's products complement and expand MS Jacobs' already extensive array of process measurement and control instruments and equipment. The ICON line includes devices for measuring and controlling flow, level, pressure, and temperature. Their unique all plastic construction makes the ICON equipment and instruments particularly well suited to the harshest industrial environments.

For information about the complete line of corrosion resistant industrial fluid handling process control equipment from ICON, reach out to the process control experts at MS Jacobs. Share you process control challenges and combine your process knowledge with their product application expertise to formulate the best solutions.

Building Steam System Efficiency for Profitable Returns

gas fired boilers in boiler room
Improvements in steam system efficiency can yield
substantial return on investment
Steam, an energy efficient, reliable, scalable form of transferring heat, is utilized throughout commercial, industrial, and institutional settings. The ubiquitous adoption and use of this heat transfer medium has resulted in steam generation ranking as a substantial line item on any organization's financial operating report. The scale of many steam production operations can produce some sizable payback opportunities from modifications that improve efficiency or reduce maintenance requirements.

The application of modern precision measurement instrumentation is one area where comparatively modest investments in system improvement can yield ongoing returns. Magnetrol International, a globally recognized leader in the design and manufacture of flow and level instrumentation, has produced a white paper describing aspects of the steam cycle that are candidates for profitable improvement and how various measurement technologies can help garner the maximum attainable gain in efficiency.

The paper is included below, and will prove to be informative and interesting reading. More information is available on specific instrument recommendations from product application specialists. Share your steam system challenges with them and work together to find the best solutions.



Multivariable Flow Meter Provides Pressure, Temperature, Flow Measurements

Multi-Variable Flowmeter
AX Series
Courtesy Azbil N.A.
M.S. Jacobs includes the Azbil North America line of process measurement and control products in its offering. One of Azbil's flagship products is the AX series of multivariable vortex flowmeters for industrial process measurement and control. The instrument combines temperature, pressure and velocity measurement in a single instrument to provide accurate mass flow measurement of gases, liquids and steam.

When compared to arrangements with discrete instruments for each variable, incorporating several variable measurements into a single package reduces potential leakage points, installation complexity, and space requirements . Configurations for in-line or insertion installation are available for line sizes ranging from ½” to 8” for in-line and 2” and greater for insertion. A sizing guide, application and product configuration assistance is available from the product specialists at MS Jacobs.



Positive Returns From Steam Generation and Condensate Recovery Efficiency Gain

Two gas fired boilers in a boiler room
Steam systems are excellent candidates for cost saving
through increased efficiency.
The generation of steam is a lifeblood operation to many commercial and industrial operations around the world. The large scale of its use can make steam generation one of the largest energy consumption activities for an industrial plant or commercial building. The size and complexity of steam systems, with generation, condensate handling, heat recovery, and feedwater treatment, provides a number of areas where inefficiencies can cost very substantial sums of money. Conversely, enhancing efficiency toward a maximum attainable level will yield very large savings in operating costs.

Magnetrol International, a globally recognized leader in the design and production of flow and level controls for commercial and industrial use, has produced a video summarizing the elements of the steam system that are good candidates for upgrade, as well as general direction on how to achieve increased efficiency for each. In keeping with the company's line of level and flow measurement products, the focus is on how accurate and robust instrumentation can improve overall system performance and generate a decidedly positive return on the time and funds invested.

Invest a few minutes in the video below and learn how the operating efficiency of your steam system can be elevated with an instrument upgrade. There is a white paper on the same subject available on request. You can also receive a listing of the specific Magnetrol instruments that can be applied to steam systems, with a short description of where each is applied. Reach out to a product application specialist and share your steam system challenges. Combining your system knowledge with their product application expertise will yield the best solution.


Radar Level Transmitter Crosses Competitive Price Level

pulse burst radar non-contact level measurement transmitter Magnetrol
Magnetrol Model R82 Radar Level Transmitter
With its ability to reliably detect tank liquid surface level under conditions that prove challenging to other methods, radar technology generally provides an operational advantage over other non-contact level measurement options. Historically, the cost of radar level transmitters for industrial process control applications has hindered their success as a unit of choice for some installations. Magnetrol has changed that imbalance with their recent introduction of a lower cost radar level transmitter for tough applications.

The Model R82 provides radar performance at a price point comparable to competitive ultrasonic units, but maintains the performance advantage inherent in a radar based device. The unit utilizes pulse burst radar technology at 26 GHz, employing advanced signal processing to filter out false echos produced by a range of in-tank conditions that can produce false readings from ultrasonic units.

The short video below provides a closer look at the R82 and its performance advantages. Technical data sheets and any application assistance you may need is available from product specialists. Share your level measurement and control challenges with them and work toward the best solution.

Understanding Instrument Valves

gauge root valve for process control, stainless steel
Gauge Root Valve, a type of
instrument valve
Courtesy Mac-Weld
Process measurement and control employs a wide array of gauges and instruments that may be permanently or temporarily connected to a piping system. Providing controlled isolation and connection of these instruments is the function of what are generically referred to as "instrument valves" or "gauge valves". These valves are generally small, with connection sizes ranging from 1/8" to 1", though there are specialty variants outside this range. The predominant valve type is a needle valve, but ball valves and some other types are also used. Certain attributes of particular applications may weight a selection decision toward a valve type. Widely used throughout the process industries, instrument valves are often designed to accommodate pressures as high as 6000 PSI and are intended for service with gaseous or liquid service.

When selecting an instrument valve, consider construction materials that are compatible with the process media. Additionally, operating temperature and pressure of the process must be well within the limits of the valve.

Instrument needle valves provide reliable function to throttle, regulate and isolate gaseous and aggressive non-viscous liquid services. Product offerings range from simple two-way isolation valves to multiport gauge root valves providing multifunction capability to isolate, calibrate and vent gauge, pressure switches and static instrument applications. Ball valves in this class do not provide the throttling accuracy of a needle valve, but may provide some advantage with the use of certain media. The ball valve design, with its full size port, enables easier cleaning and a lessened potential for clogging.

There are three basic configurations of instrument valves. The simplest is the isolation valve with a single inlet and outlet. It provides for selection of exposure or isolation of a connected gauge or other device to the operating process piping or vessel. Maintenance or replacement of the connected device can be effected without opening the contained process to the surrounding environment.

instrument valve schematic isolation valve schematic
Schematic representation of isolation valve

A second variant of instrument valves performs the function of an isolation valve, but has an added port on the outlet side (the side where a gauge or instrument would be connected). The added function of the port is to provide connection access for service, calibration, sampling, purging, or a host of other tasks, all of which can be completed while the process remains in operation.

schematic of block and bleed instrument valve for process control
Schematic representation of block and bleed valve
The third form of instrument valve is a multi-port valve with a single inlet and three outlets. It is often called a "gauge root valve" and serves a number of purposes with its multiple outlet connections. Sometimes two of the ports will be plugged and the instrument or gauge connected to the port providing the most convenient or functional orientation of the connected gauge or the valve handle. This valve can also enable a wide variety of applications through connection of additional instruments, gauges, valves, or other equipment.

schematic of gauge root valve for process measurement and control
Schematic representation of gauge root valve
Share your process measurement and control instrumentation and gauge challenges with application experts and benefit from their expertise.


Accurate Measurement of Very Low Flow Rates Is Key to Compressed Air System Energy Savings

Ultrasonic flowmeter for low flow rates and compressed air
The Flexus G704 CA is specially configured for
measuring flow in compressed air systems
Courtesy Flexim
Operators of plants where compressed air is utilized as an energy source are well aware of the cost associated with continuous delivery of this useful medium. Large or multiple compressors consume considerable amounts of electric power maintaining system pressure and flow requirements. With extensive piping and countless fittings, there are many potential points of leakage. Scheduling of various production operations can vary the demand for compressed air significantly. Getting control of your compressed air system and reducing operating cost is a noble goal. One of the primary tools needed to manage energy costs will be accurate and reliable flow measurement equipment. Here are some characteristics of flow measurement instrumentation that should prove advantageous:

  • Non-invasive measurement from the outer pipe wall that does not add potential leak sources or pressure drop.
  • Availability in fixed or portable configuration.
  • Highly accurate, with paired temperature compensated traceable calibrated transducers
  • Installed without disturbance to piping.
  • Bidirectional measurement
  • Rugged instrument design suitable for any kind of industrial environment
portable ultrasonic compressed air flow measurement instrument
Portable version of specialized ultrasonic flow
measurement instrument for compressed air

Ultrasonic flow measurement technology can provide all of these characteristics, providing
information that enables the operator to make fact based decisions about system design, management, and maintenance. Learn more about how ultrasonic flow meters specifically configured for compressed air system application can help you start reducing your operating cost and developing a higher level of control over your compressed air system. Share your process challenges with a product specialist and work together to build the best solution.




Accurate Thermal Metering Using Non-Invasive Technology For Building HVAC Energy Management

Non-invasive ultrasonic volumetric flow meter with temperature measurement for HVAC metering
Ultrasonic flowmeter specially configured for
thermal energy metering
Courtesy Flexim
The modern business climate has, for some now, been spooling up demand for accountability and, even more so, efficiency. Whether you think of efficiency as "doing more with less" or just avoiding the waste of financial, human, or natural resources the end result is the same and calls for similar prerequisites.

We live in a society of buildings, each with a mapped out function. Most buildings are predominantly occupied by people, bringing a requirement to maintain temperature, relative humidity, and air quality at levels of suitable comfort for human occupants. The energy consumption involved with providing that level of comfort stands as a bold line item in the operating expense ledger for any building. That is where accountability and efficiency come in. It is in the building stakeholders' interest to have knowledge regarding rates and quantity of thermal energy usage, as well as efficiency measures of delivered output per unit of input energy.

HVAC (Heating, Ventilation, Air Conditioning) primarily is an endeavor that generates and moves thermal energy throughout an enclosed space. Commercially available technology now allows a building operator to accurately measure that movement of thermal energy throughout a system or building. The process is generally called BTU metering and has a number of justifiable benefits.

  • Real time equipment performance measurement.
  • Sub metering can indicate specific areas of consumption.
  • Ability to directly bill multiple tenants in a single building for their thermal energy usage.
  • Monitor and balance energy flows.

BTU metering essentially involves inlet and outlet temperature measurement of heat transfer liquids, along with their flow rate. While the principle is simple, the intricacies of the measurement methods and equipment accuracy can have a substantial impact on the accuracy, and thus the benefit, of the measurement data. Additionally, adding more instrumentation to an already complex system can create an additional on-going maintenance and calibration burden to retain the necessary levels of accuracy and function. Success at gaining the benefit of the performance data while minimizing the additional maintenance burden due to the instrumentation should be the goal.

One solution calls for the use of clamp on ultrasonic flow meters to measure liquid flow, coupled with temperature measurement in a single unit that will perform necessary calculations and provide output data in useful engineering units. An overarching benefit of the clamp on meter is its non-invasive nature, allowing its retrofit to in-place systems with no disturbance to existing piping. Here are some other characteristics of a highly effective BTU measurement unit:
  • No wear mechanism as part of the flow measurement unit
  • Traceable accuracy of flow and temperature measurements
  • Simple installation in new or retrofit applications without disruption to system operation
  • Reliable and maintenance free operation
  • Accurate measurement from near zero flow rate to maximum system flow
  • Stable sensing with no zero drift
  • Communications protocol to match building energy management system
  • Large storage cache for data, in case of communication failure
  • Common output signals, 4-20 ma or other, usable with selected ancillary equipment
Selecting the right equipment or instrumentation is the most important step along the path of adding measurement capability to increase efficiency. Without a solid stream of reliable data, useful decisions become difficult. Contact a product application specialist and share your requirements and goals. Combining your process and system knowledge with their product application expertise will produce a good outcome.


Selecting Single-ended vs. Differential Voltage Measurement for Process Measurement - Part 2 of 2

programmable logic controller with input and output devices for process control
Selecting the proper signal conditioning equipment
is essential to maintaining process operation
This second part of a two part series of white papers provides discussion of the differences in function of differential and single-ended voltage measurement for industrial process measurement and control. Part One focused primarily on single-ended voltage measurement, how it differs from differential, and in what application context it can be best applied. This white paper, provided below, delves into differential voltage measurement and how it may be advantageous, even necessary, in a range of application scenarios.

The papers are produced by Acromag, Inc., a globally recognized manufacturer of signal conditioning equipment. Information about Acromag's extensive product offering is available from M.S. Jacobs & Associates, as well as technical details and application assistance.



Selecting Single-ended vs. Differential Voltage Measurement for Process Measurement - Part 1 of 2

DIN rail mounted process measurement signal conditioning module
Acromag manufactures an extensive array
of signal conditioning modules
Process control requires process measurement. The industry provides a enormous array of measuring devices for almost every conceivable process parameter. Selecting the right signal conditioner that will convert a current process state into a signal to be transmitted to and utilized by a controller can be challenging. One area of confusion centers around whether to use differential or single-ended voltage measurement.

Acromag, Inc., a globally recognized manufacturer of signal conditioning equipment for industrial process measurement and control, has provided a white paper that helps sort out reasons behind a beneficial selection of single-ended or differential voltage measurement devices. Explanation of how each functions and tips on selection criteria for an application are also provided. The technicality of the language is at a level that is comprehensible to most, but retains that exciting engineering edge for the purists among us. The first part of two (Part Two), provided below, focuses mostly on single-ended measurement. Part two covers differential.

Top flight assistance with your process measurement and control application challenges is available from M.S. Jacobs & Associates.



Get To Know MS Jacobs & Associates for Industrial Process Control Instruments and Equipment

Electric power generation plant
MS Jacobs serves the electric power generation industry,
as well as chemical, oil and gas, water and wastewater
M.S. Jacobs and Associates has been a leading manufacturer's representative and distributor of industrial instrumentation and controls since 1945.  Expanding from its original focus on the steel industry, MS Jacobs services and supplies products in all major industrial markets, including power generation, chemical processing, pulp and paper, oil and gas production, water and wastewater treatment, and nuclear power generation.

The company's longevity and dedication to the industrial market has resulted in a broad offering of superior quality products for flow, level, pressure, and temperature measurement, as well as filtration products and valves. Everyone at MS Jacobs takes pride in the company's ability to solve tough applications and provide exceptional customer service with a team of trained outside sales engineers and inside customer service representatives.

MS Jacobs' Pittsburgh service center provides instrument calibration and repair for MSJ's complete line of products, as well as those of other manufacturers. The company carries factory authorization for repair of numerous manufacturers' industrial process instrumentation products. The service center also provides custom assembly of instruments and other gear to meet customer requirements. Completed assemblies are tested and certified prior to shipment.

Reach out to MS Jacobs & Associates for the products and services that move your process instrumentation and control projects toward a successful completion.


Non-Invasive Measurement of Extremely Low Flow Rates




Industrial process measurement and control operations present a continuous stream of challenges to designers, engineers, operators, and equipment manufacturers. The innumerable combinations of environmental, safety, financial, and other concerns have lead to a wide variety of instruments, equipment, and techniques for meeting specific process requirements. A critical element of many industrial processes is the measurement of liquid flow. Matching the best available flow measurement technology or product to an application calls for through knowledge of the process, the medium being measured, and the strengths and limitations of a proposed measurement device. The most current product and application information is available from specialists in flow measurement.

The video illustrates how a special adaptation of ultrasonic flow measurement technology is utilized to measure extremely low flow rates. Specific product information is also included, showing the advantages and specific application ranges of this specialty product from Flexim Americas.


Oxygen or High Purity Service Valve Preparation

cutaway view of industrial ball valve for process control
Industrial Ball Valve
Courtesy Marwin Valve
Oxygen is used extensively throughout a wide range of industrial processes. Medical, deep-sea, metal cutting, welding, and metal hardening are a few examples. The steel industry uses oxygen to increase capacity and efficiency in furnaces. As a synthesis gas, oxygen is also used in the production of gasoline, methanol and ammonia.

Odorless and colorless, oxygen is concentrated in atmospheric air at approximately 21%. While O2, by itself, is non-flammable, it vigorously supports combustion of other materials. Allowing oils or greases to contact high concentrations of oxygen can result in ignition and possibly explosion. Oxygen service preparation of an industrial valve calls for special cleaning processes or steps that remove all traces of oils and other contaminants from the valve to prepare for safe use with oxygen (O2). Aside from the reactive concerns surrounding oxygen, O2 preparation is also used for applications where high purity must be maintained and valves must be free of contaminants.

Gaseous oxygen is noncorrosive and may be used with a variety of metals. Stainless steel, bronze and brass are common. Liquid oxygen presents unique challenges due to cryogenic temperatures. In this case, valve bodies, stems, seals and packing must be carefully chosen.

Various types of valves are available for oxygen service, along with a wide array of connections, including screwed, socket weld, ANSI Class 150 and ANSI Class 300, DIN PN16 and DIN PN40 flanged ends. Body materials include 316 stainless steel, monel, bronze and brass. Ball and stem material is often 316 stainless steel or brass. PTFE or glass filled PTFE are inert in oxygen, serving as a common seat and seal material employed for O2 service.

Common procedures for O2 service are to carefully deburr metal parts, then meticulously clean to remove all traces of oil, grease and hydrocarbons before assembly. Valve assembly is performed in a clean area using special gloves to assure no grease or dust contaminates the valve. Lubricants compatible with oxygen must be used. Seating and leakage pressure tests are conducted in the clean area, using grease free nitrogen. Specially cleaned tools are used throughout the process. Once assembled, the valves are tested and left in the open position. A silicone desiccant pack is usually inserted in the open valve port, then the valve ports are capped. A warning label about the desiccant pack's location is included, with a second tag indicating the valve has been specially prepared for oxygen service. Finally, valves are individually sealed in polyethylene bags for shipment and storage. Different manufacturers may follow slightly differing protocols, but the basics are the same. The valve must be delivered scrupulously contaminant free.

The O2 preparation of valves is one of many special production variants available to accommodate your special application requirements. Share your valve requirements and challenges with a valve specialist to get the best solution recommendations.

Video Reenactment and Analysis of Industrial Fire and Explosion

outdoor petroleum storage tanks at industrial facility
All facilities have some element of risk
Industrial accidents range in severity and impact from minuscule to catastrophic. As operators, owners, or technicians involved with industrial operations, we all have a degree of moral, ethical, and legal responsibility to conduct our work in a manner that does not unduly endanger personnel, property, or the environment. Maintaining a diligent safety stance can be helped by reviewing industrial accidents at other facilities. There is much to learn from these unfortunate events, even when they happen in an industry that may seem somewhat removed from your own.

The U.S. Chemical Safety Board, or CSB, is an independent federal agency that investigates industrial chemical accidents. Below, find one of their video reenactments of an explosion that occurred in Texas in 2013, along with their findings regarding the cause of the incident. Check out the video and sharpen your senses to evaluate potential trouble spots in your own operation.

Contact M.S. Jacobs & Associates for any safety related information you may need concerning their lines of industrial and process control products.


New Product: Non-Contact Radar Level Transmitter

non-contact radar level transmitter for industrial process measurement and control
Model R96
Non-Contact Radar Level Transmitter
Courtesy Magnetrol
A new entry into the non-contact radar level measurement transmitter arena has been released by Magnetrol, a well known manufacturer of level and flow measurement instrumentation for the industrial process control field. The new Model R96 Non-Contact Radar Level Transmitter is intended primarily for applications where continuous fluid level measurement is required.

The company sums up the technical capabilities with their description of the product...

"Virtually unaffected by the presence of vapors or air movement within a vessel’s free space, the two-wire, loop-powered, 6 GHz Radar transmitter measures a wide variety of liquid media in process conditions ranging from calm product surfaces and water-based media to turbulent surfaces and aggressive hydrocarbon media."

The Model R96 level transmitter offers features that combine to deliver a state-of-art instrument for accurate continuous level measurement. A product brochure is included below. Contact application specialists to formulate the right product configuration for your level measurement challenge, or to get more detailed information.



New Metal Seated Ball Valves Introduced

Cutaway view of metal seated industrial ball valve SVF Flow Controls
Cutaway view of a metal seated ball valve
Courtesy SVF Flow Controls
Ball valves are utilized across a wide range of industrial process fluid flow control applications. Consequently, there are many ball valve variants, each designed to satisfy a particular range of application requirements.

Reviewing some of the attributes of ball valves that might make them the best choice:
  • Tight closure.
  • Very low resistance to flow.
  • Best suited for applications requiring fully closed or open control.
  • 90 degrees of rotational motion from open to closed position yields rapid response.
  • Comparatively compact, without the space requirement for extending stem movement as required by some other valve types.
  • Wide range of construction materials for the body, stem, ball, and seals.
  • Moderate force required for actuation.
  • A full size port provides for very low pressure drop across the valve when fully open.
  • Requirements for maintenance are generally low. 
  • No lubrication required.

One limiting factor for the application of ball valves, as with many other valve types, is the seat material. Most often, seats are fabricated from elastomeric or other "soft" materials. While these materials provide good sealing performance, their inability to withstand higher fluid temperatures makes them unsuitable for some industrial applications. To satisfy a wider range of process applications, some manufacturers offer metal seated ball valves. The metal seated valves are designed to meet severe service applications involving high temperature, erosive fluids and other challenging shutoff requirements where soft seats would rapidly deteriorate.

One manufacturer, SVF Flow Controls, provides metal seated ball valves in sizes 1/2" through 12" with a full port design. Because of their intent for severe service applications, metal seated ball valves are generally provided with other design features that enable their application across a wide range of high temperature or erosive fluid applications.

I have included a data sheet below that provides additional technical information, or you may contact a valve application specialist for any assistance you need. Share you fluid control challenges and get effective solutions.


Multi-function Stainless Steel Compressed Air Filter Regulator For Severe Environments


Industrial processes utilize compressed air and gases for many applications. Maintaining appropriate pressure and keeping the air supply free of particulates is a basic requirement for almost every compressed air system. The Rotork Midland brand of filter regulators are designed to provide both the filtration and pressure regulation functions in a single unit. Additionally, the 3550 series is designed for service in harsh environments with it stainless steel construction. Intended primarily for use in valve actuation air supplies, several versions provide differing pressure ranges, connection sizes, and maximum flow rates. There are options for filtration to the 5 micron level.

Basic data sheets for the units are provided below. All the application assistance you need for your valve automation challenges is available from the specialists at MS Jacobs.



Process and Equipment Monitoring Using Telemetry

high voltage transformers in electrical substation
Continuous monitoring of remotely located
equipment yields a wide range of benefits
Industrial operations and processes are populated with unimaginable variations of equipment and applications, each with specific operating sequences intended to produce a specific outcome. By their scale and nature, most have the capacity to substantially impact the success of the organization. As stakeholders in the operation of industrial processes and equipment, we have an interest in monitoring their performance for any number of reasons.

  • Financial - The investment in plant and equipment is financially significant to a company of any size. An operator benefits from monitoring process inputs and outputs. Scrutinizing the operating status of process equipment and intermediate process conditions provides valuable information that can be used to minimize negative events of many types.
  • Maintenance - Keeping a real time watch over operating characteristics of machinery can present opportunities to head off trouble before it happens. There are many warning signs that can precede equipment failure, and taking prompt remedial action requires issuance of real time warnings.
  • Safety - Industrial operations of all types tend to exhibit levels of hazard to personnel or environment ranging from minor to potentially catastrophic. The rigorous procedures employed to maintain operation within prescribed limits are enabled through the use of information about process conditions.
  • Regulatory - There can be jurisdictional requirements to monitor and report certain process characteristics. An ability to conduct the needed action from afar, without having to station personnel at a remote location, has some real benefit.
This list is not intended to be complete or definitive. There are countless ways that process operators can use real time data to enhance all facets of their operation. A challenge arises when the process or operation extends over a large area, perhaps beyond the boundaries of the primary facility. That's where telemetry serves as the means to deliver needed information to a decision making location.
Modern requirements for "knowing what is happening" increase the need for telemetry in industrial operations. 
Telemetry is getting the information you need from a remote or inaccessible location and delivering it to where it can be used for decision making. 
With the wide array of hardware offered by process measurement and control equipment suppliers, implementing the data collection and transmission has become a fairly straight forward task. Simply put, here is what you need to accomplish.

  • Measure or detect the information needed. You know how to do this. Sensors, counters, or other regularly available process measuring equipment is what is needed here.
  • Convert the measurement into a transmissible form. This will likely be accomplished by the transmission gear. The measurement devices you use should provide an output signal that is compatible with the input requirements of the selected transmission equipment.
  • Transmit the information to the receiving station (the decision making point). The device and equipment manufacturers do most of the hard work of accomplishing this task. Generally, regardless of the transmission method, the extent of the work needed to put transmission into operation involves powering up the equipment and assigning addresses or channels to identify the source of the signal.
  • Receive the signal and convert it to a form readable by the decision making portion of the system. Again, the telemetry equipment manufacturers handle the details in the design of their equipment. Implementation consists of similar steps to those of the transmission equipment.
It is recommended that the transmission method be selected first. It must accommodate any challenges presented by the distance to be covered and any obstacles that may impact the delivery of the signal to its destination. Coordinate the measuring device output signal selection with the transmission device input requirements. The receiving equipment must be capable of producing an output signal that is readable by whatever decision making or recording equipment is used.

Below is a case study illustrating how a user derived a signal from a utility plant to provide data on local power consumption.You will see how they selected and employed equipment to accomplish the four tasks outlined above.

The applications are only limited by your imagination and ingenuity. Instead of wondering about what is happening at remote locations, operators can now easily measure and deliver useful operating information across almost any distance. Share your challenges with process control specialists and develop the solutions you need.