Building Steam System Efficiency for Profitable Returns

gas fired boilers in boiler room
Improvements in steam system efficiency can yield
substantial return on investment
Steam, an energy efficient, reliable, scalable form of transferring heat, is utilized throughout commercial, industrial, and institutional settings. The ubiquitous adoption and use of this heat transfer medium has resulted in steam generation ranking as a substantial line item on any organization's financial operating report. The scale of many steam production operations can produce some sizable payback opportunities from modifications that improve efficiency or reduce maintenance requirements.

The application of modern precision measurement instrumentation is one area where comparatively modest investments in system improvement can yield ongoing returns. Magnetrol International, a globally recognized leader in the design and manufacture of flow and level instrumentation, has produced a white paper describing aspects of the steam cycle that are candidates for profitable improvement and how various measurement technologies can help garner the maximum attainable gain in efficiency.

The paper is included below, and will prove to be informative and interesting reading. More information is available on specific instrument recommendations from product application specialists. Share your steam system challenges with them and work together to find the best solutions.



Multivariable Flow Meter Provides Pressure, Temperature, Flow Measurements

Multi-Variable Flowmeter
AX Series
Courtesy Azbil N.A.
M.S. Jacobs includes the Azbil North America line of process measurement and control products in its offering. One of Azbil's flagship products is the AX series of multivariable vortex flowmeters for industrial process measurement and control. The instrument combines temperature, pressure and velocity measurement in a single instrument to provide accurate mass flow measurement of gases, liquids and steam.

When compared to arrangements with discrete instruments for each variable, incorporating several variable measurements into a single package reduces potential leakage points, installation complexity, and space requirements . Configurations for in-line or insertion installation are available for line sizes ranging from ½” to 8” for in-line and 2” and greater for insertion. A sizing guide, application and product configuration assistance is available from the product specialists at MS Jacobs.



Positive Returns From Steam Generation and Condensate Recovery Efficiency Gain

Two gas fired boilers in a boiler room
Steam systems are excellent candidates for cost saving
through increased efficiency.
The generation of steam is a lifeblood operation to many commercial and industrial operations around the world. The large scale of its use can make steam generation one of the largest energy consumption activities for an industrial plant or commercial building. The size and complexity of steam systems, with generation, condensate handling, heat recovery, and feedwater treatment, provides a number of areas where inefficiencies can cost very substantial sums of money. Conversely, enhancing efficiency toward a maximum attainable level will yield very large savings in operating costs.

Magnetrol International, a globally recognized leader in the design and production of flow and level controls for commercial and industrial use, has produced a video summarizing the elements of the steam system that are good candidates for upgrade, as well as general direction on how to achieve increased efficiency for each. In keeping with the company's line of level and flow measurement products, the focus is on how accurate and robust instrumentation can improve overall system performance and generate a decidedly positive return on the time and funds invested.

Invest a few minutes in the video below and learn how the operating efficiency of your steam system can be elevated with an instrument upgrade. There is a white paper on the same subject available on request. You can also receive a listing of the specific Magnetrol instruments that can be applied to steam systems, with a short description of where each is applied. Reach out to a product application specialist and share your steam system challenges. Combining your system knowledge with their product application expertise will yield the best solution.


Radar Level Transmitter Crosses Competitive Price Level

pulse burst radar non-contact level measurement transmitter Magnetrol
Magnetrol Model R82 Radar Level Transmitter
With its ability to reliably detect tank liquid surface level under conditions that prove challenging to other methods, radar technology generally provides an operational advantage over other non-contact level measurement options. Historically, the cost of radar level transmitters for industrial process control applications has hindered their success as a unit of choice for some installations. Magnetrol has changed that imbalance with their recent introduction of a lower cost radar level transmitter for tough applications.

The Model R82 provides radar performance at a price point comparable to competitive ultrasonic units, but maintains the performance advantage inherent in a radar based device. The unit utilizes pulse burst radar technology at 26 GHz, employing advanced signal processing to filter out false echos produced by a range of in-tank conditions that can produce false readings from ultrasonic units.

The short video below provides a closer look at the R82 and its performance advantages. Technical data sheets and any application assistance you may need is available from product specialists. Share your level measurement and control challenges with them and work toward the best solution.

Understanding Instrument Valves

gauge root valve for process control, stainless steel
Gauge Root Valve, a type of
instrument valve
Courtesy Mac-Weld
Process measurement and control employs a wide array of gauges and instruments that may be permanently or temporarily connected to a piping system. Providing controlled isolation and connection of these instruments is the function of what are generically referred to as "instrument valves" or "gauge valves". These valves are generally small, with connection sizes ranging from 1/8" to 1", though there are specialty variants outside this range. The predominant valve type is a needle valve, but ball valves and some other types are also used. Certain attributes of particular applications may weight a selection decision toward a valve type. Widely used throughout the process industries, instrument valves are often designed to accommodate pressures as high as 6000 PSI and are intended for service with gaseous or liquid service.

When selecting an instrument valve, consider construction materials that are compatible with the process media. Additionally, operating temperature and pressure of the process must be well within the limits of the valve.

Instrument needle valves provide reliable function to throttle, regulate and isolate gaseous and aggressive non-viscous liquid services. Product offerings range from simple two-way isolation valves to multiport gauge root valves providing multifunction capability to isolate, calibrate and vent gauge, pressure switches and static instrument applications. Ball valves in this class do not provide the throttling accuracy of a needle valve, but may provide some advantage with the use of certain media. The ball valve design, with its full size port, enables easier cleaning and a lessened potential for clogging.

There are three basic configurations of instrument valves. The simplest is the isolation valve with a single inlet and outlet. It provides for selection of exposure or isolation of a connected gauge or other device to the operating process piping or vessel. Maintenance or replacement of the connected device can be effected without opening the contained process to the surrounding environment.

instrument valve schematic isolation valve schematic
Schematic representation of isolation valve

A second variant of instrument valves performs the function of an isolation valve, but has an added port on the outlet side (the side where a gauge or instrument would be connected). The added function of the port is to provide connection access for service, calibration, sampling, purging, or a host of other tasks, all of which can be completed while the process remains in operation.

schematic of block and bleed instrument valve for process control
Schematic representation of block and bleed valve
The third form of instrument valve is a multi-port valve with a single inlet and three outlets. It is often called a "gauge root valve" and serves a number of purposes with its multiple outlet connections. Sometimes two of the ports will be plugged and the instrument or gauge connected to the port providing the most convenient or functional orientation of the connected gauge or the valve handle. This valve can also enable a wide variety of applications through connection of additional instruments, gauges, valves, or other equipment.

schematic of gauge root valve for process measurement and control
Schematic representation of gauge root valve
Share your process measurement and control instrumentation and gauge challenges with application experts and benefit from their expertise.


Accurate Measurement of Very Low Flow Rates Is Key to Compressed Air System Energy Savings

Ultrasonic flowmeter for low flow rates and compressed air
The Flexus G704 CA is specially configured for
measuring flow in compressed air systems
Courtesy Flexim
Operators of plants where compressed air is utilized as an energy source are well aware of the cost associated with continuous delivery of this useful medium. Large or multiple compressors consume considerable amounts of electric power maintaining system pressure and flow requirements. With extensive piping and countless fittings, there are many potential points of leakage. Scheduling of various production operations can vary the demand for compressed air significantly. Getting control of your compressed air system and reducing operating cost is a noble goal. One of the primary tools needed to manage energy costs will be accurate and reliable flow measurement equipment. Here are some characteristics of flow measurement instrumentation that should prove advantageous:

  • Non-invasive measurement from the outer pipe wall that does not add potential leak sources or pressure drop.
  • Availability in fixed or portable configuration.
  • Highly accurate, with paired temperature compensated traceable calibrated transducers
  • Installed without disturbance to piping.
  • Bidirectional measurement
  • Rugged instrument design suitable for any kind of industrial environment
portable ultrasonic compressed air flow measurement instrument
Portable version of specialized ultrasonic flow
measurement instrument for compressed air

Ultrasonic flow measurement technology can provide all of these characteristics, providing
information that enables the operator to make fact based decisions about system design, management, and maintenance. Learn more about how ultrasonic flow meters specifically configured for compressed air system application can help you start reducing your operating cost and developing a higher level of control over your compressed air system. Share your process challenges with a product specialist and work together to build the best solution.




Accurate Thermal Metering Using Non-Invasive Technology For Building HVAC Energy Management

Non-invasive ultrasonic volumetric flow meter with temperature measurement for HVAC metering
Ultrasonic flowmeter specially configured for
thermal energy metering
Courtesy Flexim
The modern business climate has, for some now, been spooling up demand for accountability and, even more so, efficiency. Whether you think of efficiency as "doing more with less" or just avoiding the waste of financial, human, or natural resources the end result is the same and calls for similar prerequisites.

We live in a society of buildings, each with a mapped out function. Most buildings are predominantly occupied by people, bringing a requirement to maintain temperature, relative humidity, and air quality at levels of suitable comfort for human occupants. The energy consumption involved with providing that level of comfort stands as a bold line item in the operating expense ledger for any building. That is where accountability and efficiency come in. It is in the building stakeholders' interest to have knowledge regarding rates and quantity of thermal energy usage, as well as efficiency measures of delivered output per unit of input energy.

HVAC (Heating, Ventilation, Air Conditioning) primarily is an endeavor that generates and moves thermal energy throughout an enclosed space. Commercially available technology now allows a building operator to accurately measure that movement of thermal energy throughout a system or building. The process is generally called BTU metering and has a number of justifiable benefits.

  • Real time equipment performance measurement.
  • Sub metering can indicate specific areas of consumption.
  • Ability to directly bill multiple tenants in a single building for their thermal energy usage.
  • Monitor and balance energy flows.

BTU metering essentially involves inlet and outlet temperature measurement of heat transfer liquids, along with their flow rate. While the principle is simple, the intricacies of the measurement methods and equipment accuracy can have a substantial impact on the accuracy, and thus the benefit, of the measurement data. Additionally, adding more instrumentation to an already complex system can create an additional on-going maintenance and calibration burden to retain the necessary levels of accuracy and function. Success at gaining the benefit of the performance data while minimizing the additional maintenance burden due to the instrumentation should be the goal.

One solution calls for the use of clamp on ultrasonic flow meters to measure liquid flow, coupled with temperature measurement in a single unit that will perform necessary calculations and provide output data in useful engineering units. An overarching benefit of the clamp on meter is its non-invasive nature, allowing its retrofit to in-place systems with no disturbance to existing piping. Here are some other characteristics of a highly effective BTU measurement unit:
  • No wear mechanism as part of the flow measurement unit
  • Traceable accuracy of flow and temperature measurements
  • Simple installation in new or retrofit applications without disruption to system operation
  • Reliable and maintenance free operation
  • Accurate measurement from near zero flow rate to maximum system flow
  • Stable sensing with no zero drift
  • Communications protocol to match building energy management system
  • Large storage cache for data, in case of communication failure
  • Common output signals, 4-20 ma or other, usable with selected ancillary equipment
Selecting the right equipment or instrumentation is the most important step along the path of adding measurement capability to increase efficiency. Without a solid stream of reliable data, useful decisions become difficult. Contact a product application specialist and share your requirements and goals. Combining your process and system knowledge with their product application expertise will produce a good outcome.


Selecting Single-ended vs. Differential Voltage Measurement for Process Measurement - Part 2 of 2

programmable logic controller with input and output devices for process control
Selecting the proper signal conditioning equipment
is essential to maintaining process operation
This second part of a two part series of white papers provides discussion of the differences in function of differential and single-ended voltage measurement for industrial process measurement and control. Part One focused primarily on single-ended voltage measurement, how it differs from differential, and in what application context it can be best applied. This white paper, provided below, delves into differential voltage measurement and how it may be advantageous, even necessary, in a range of application scenarios.

The papers are produced by Acromag, Inc., a globally recognized manufacturer of signal conditioning equipment. Information about Acromag's extensive product offering is available from M.S. Jacobs & Associates, as well as technical details and application assistance.



Selecting Single-ended vs. Differential Voltage Measurement for Process Measurement - Part 1 of 2

DIN rail mounted process measurement signal conditioning module
Acromag manufactures an extensive array
of signal conditioning modules
Process control requires process measurement. The industry provides a enormous array of measuring devices for almost every conceivable process parameter. Selecting the right signal conditioner that will convert a current process state into a signal to be transmitted to and utilized by a controller can be challenging. One area of confusion centers around whether to use differential or single-ended voltage measurement.

Acromag, Inc., a globally recognized manufacturer of signal conditioning equipment for industrial process measurement and control, has provided a white paper that helps sort out reasons behind a beneficial selection of single-ended or differential voltage measurement devices. Explanation of how each functions and tips on selection criteria for an application are also provided. The technicality of the language is at a level that is comprehensible to most, but retains that exciting engineering edge for the purists among us. The first part of two (Part Two), provided below, focuses mostly on single-ended measurement. Part two covers differential.

Top flight assistance with your process measurement and control application challenges is available from M.S. Jacobs & Associates.



Get To Know MS Jacobs & Associates for Industrial Process Control Instruments and Equipment

Electric power generation plant
MS Jacobs serves the electric power generation industry,
as well as chemical, oil and gas, water and wastewater
M.S. Jacobs and Associates has been a leading manufacturer's representative and distributor of industrial instrumentation and controls since 1945.  Expanding from its original focus on the steel industry, MS Jacobs services and supplies products in all major industrial markets, including power generation, chemical processing, pulp and paper, oil and gas production, water and wastewater treatment, and nuclear power generation.

The company's longevity and dedication to the industrial market has resulted in a broad offering of superior quality products for flow, level, pressure, and temperature measurement, as well as filtration products and valves. Everyone at MS Jacobs takes pride in the company's ability to solve tough applications and provide exceptional customer service with a team of trained outside sales engineers and inside customer service representatives.

MS Jacobs' Pittsburgh service center provides instrument calibration and repair for MSJ's complete line of products, as well as those of other manufacturers. The company carries factory authorization for repair of numerous manufacturers' industrial process instrumentation products. The service center also provides custom assembly of instruments and other gear to meet customer requirements. Completed assemblies are tested and certified prior to shipment.

Reach out to MS Jacobs & Associates for the products and services that move your process instrumentation and control projects toward a successful completion.


Non-Invasive Measurement of Extremely Low Flow Rates




Industrial process measurement and control operations present a continuous stream of challenges to designers, engineers, operators, and equipment manufacturers. The innumerable combinations of environmental, safety, financial, and other concerns have lead to a wide variety of instruments, equipment, and techniques for meeting specific process requirements. A critical element of many industrial processes is the measurement of liquid flow. Matching the best available flow measurement technology or product to an application calls for through knowledge of the process, the medium being measured, and the strengths and limitations of a proposed measurement device. The most current product and application information is available from specialists in flow measurement.

The video illustrates how a special adaptation of ultrasonic flow measurement technology is utilized to measure extremely low flow rates. Specific product information is also included, showing the advantages and specific application ranges of this specialty product from Flexim Americas.


Oxygen or High Purity Service Valve Preparation

cutaway view of industrial ball valve for process control
Industrial Ball Valve
Courtesy Marwin Valve
Oxygen is used extensively throughout a wide range of industrial processes. Medical, deep-sea, metal cutting, welding, and metal hardening are a few examples. The steel industry uses oxygen to increase capacity and efficiency in furnaces. As a synthesis gas, oxygen is also used in the production of gasoline, methanol and ammonia.

Odorless and colorless, oxygen is concentrated in atmospheric air at approximately 21%. While O2, by itself, is non-flammable, it vigorously supports combustion of other materials. Allowing oils or greases to contact high concentrations of oxygen can result in ignition and possibly explosion. Oxygen service preparation of an industrial valve calls for special cleaning processes or steps that remove all traces of oils and other contaminants from the valve to prepare for safe use with oxygen (O2). Aside from the reactive concerns surrounding oxygen, O2 preparation is also used for applications where high purity must be maintained and valves must be free of contaminants.

Gaseous oxygen is noncorrosive and may be used with a variety of metals. Stainless steel, bronze and brass are common. Liquid oxygen presents unique challenges due to cryogenic temperatures. In this case, valve bodies, stems, seals and packing must be carefully chosen.

Various types of valves are available for oxygen service, along with a wide array of connections, including screwed, socket weld, ANSI Class 150 and ANSI Class 300, DIN PN16 and DIN PN40 flanged ends. Body materials include 316 stainless steel, monel, bronze and brass. Ball and stem material is often 316 stainless steel or brass. PTFE or glass filled PTFE are inert in oxygen, serving as a common seat and seal material employed for O2 service.

Common procedures for O2 service are to carefully deburr metal parts, then meticulously clean to remove all traces of oil, grease and hydrocarbons before assembly. Valve assembly is performed in a clean area using special gloves to assure no grease or dust contaminates the valve. Lubricants compatible with oxygen must be used. Seating and leakage pressure tests are conducted in the clean area, using grease free nitrogen. Specially cleaned tools are used throughout the process. Once assembled, the valves are tested and left in the open position. A silicone desiccant pack is usually inserted in the open valve port, then the valve ports are capped. A warning label about the desiccant pack's location is included, with a second tag indicating the valve has been specially prepared for oxygen service. Finally, valves are individually sealed in polyethylene bags for shipment and storage. Different manufacturers may follow slightly differing protocols, but the basics are the same. The valve must be delivered scrupulously contaminant free.

The O2 preparation of valves is one of many special production variants available to accommodate your special application requirements. Share your valve requirements and challenges with a valve specialist to get the best solution recommendations.

Video Reenactment and Analysis of Industrial Fire and Explosion

outdoor petroleum storage tanks at industrial facility
All facilities have some element of risk
Industrial accidents range in severity and impact from minuscule to catastrophic. As operators, owners, or technicians involved with industrial operations, we all have a degree of moral, ethical, and legal responsibility to conduct our work in a manner that does not unduly endanger personnel, property, or the environment. Maintaining a diligent safety stance can be helped by reviewing industrial accidents at other facilities. There is much to learn from these unfortunate events, even when they happen in an industry that may seem somewhat removed from your own.

The U.S. Chemical Safety Board, or CSB, is an independent federal agency that investigates industrial chemical accidents. Below, find one of their video reenactments of an explosion that occurred in Texas in 2013, along with their findings regarding the cause of the incident. Check out the video and sharpen your senses to evaluate potential trouble spots in your own operation.

Contact M.S. Jacobs & Associates for any safety related information you may need concerning their lines of industrial and process control products.


New Product: Non-Contact Radar Level Transmitter

non-contact radar level transmitter for industrial process measurement and control
Model R96
Non-Contact Radar Level Transmitter
Courtesy Magnetrol
A new entry into the non-contact radar level measurement transmitter arena has been released by Magnetrol, a well known manufacturer of level and flow measurement instrumentation for the industrial process control field. The new Model R96 Non-Contact Radar Level Transmitter is intended primarily for applications where continuous fluid level measurement is required.

The company sums up the technical capabilities with their description of the product...

"Virtually unaffected by the presence of vapors or air movement within a vessel’s free space, the two-wire, loop-powered, 6 GHz Radar transmitter measures a wide variety of liquid media in process conditions ranging from calm product surfaces and water-based media to turbulent surfaces and aggressive hydrocarbon media."

The Model R96 level transmitter offers features that combine to deliver a state-of-art instrument for accurate continuous level measurement. A product brochure is included below. Contact application specialists to formulate the right product configuration for your level measurement challenge, or to get more detailed information.



New Metal Seated Ball Valves Introduced

Cutaway view of metal seated industrial ball valve SVF Flow Controls
Cutaway view of a metal seated ball valve
Courtesy SVF Flow Controls
Ball valves are utilized across a wide range of industrial process fluid flow control applications. Consequently, there are many ball valve variants, each designed to satisfy a particular range of application requirements.

Reviewing some of the attributes of ball valves that might make them the best choice:
  • Tight closure.
  • Very low resistance to flow.
  • Best suited for applications requiring fully closed or open control.
  • 90 degrees of rotational motion from open to closed position yields rapid response.
  • Comparatively compact, without the space requirement for extending stem movement as required by some other valve types.
  • Wide range of construction materials for the body, stem, ball, and seals.
  • Moderate force required for actuation.
  • A full size port provides for very low pressure drop across the valve when fully open.
  • Requirements for maintenance are generally low. 
  • No lubrication required.

One limiting factor for the application of ball valves, as with many other valve types, is the seat material. Most often, seats are fabricated from elastomeric or other "soft" materials. While these materials provide good sealing performance, their inability to withstand higher fluid temperatures makes them unsuitable for some industrial applications. To satisfy a wider range of process applications, some manufacturers offer metal seated ball valves. The metal seated valves are designed to meet severe service applications involving high temperature, erosive fluids and other challenging shutoff requirements where soft seats would rapidly deteriorate.

One manufacturer, SVF Flow Controls, provides metal seated ball valves in sizes 1/2" through 12" with a full port design. Because of their intent for severe service applications, metal seated ball valves are generally provided with other design features that enable their application across a wide range of high temperature or erosive fluid applications.

I have included a data sheet below that provides additional technical information, or you may contact a valve application specialist for any assistance you need. Share you fluid control challenges and get effective solutions.


Multi-function Stainless Steel Compressed Air Filter Regulator For Severe Environments


Industrial processes utilize compressed air and gases for many applications. Maintaining appropriate pressure and keeping the air supply free of particulates is a basic requirement for almost every compressed air system. The Rotork Midland brand of filter regulators are designed to provide both the filtration and pressure regulation functions in a single unit. Additionally, the 3550 series is designed for service in harsh environments with it stainless steel construction. Intended primarily for use in valve actuation air supplies, several versions provide differing pressure ranges, connection sizes, and maximum flow rates. There are options for filtration to the 5 micron level.

Basic data sheets for the units are provided below. All the application assistance you need for your valve automation challenges is available from the specialists at MS Jacobs.



Process and Equipment Monitoring Using Telemetry

high voltage transformers in electrical substation
Continuous monitoring of remotely located
equipment yields a wide range of benefits
Industrial operations and processes are populated with unimaginable variations of equipment and applications, each with specific operating sequences intended to produce a specific outcome. By their scale and nature, most have the capacity to substantially impact the success of the organization. As stakeholders in the operation of industrial processes and equipment, we have an interest in monitoring their performance for any number of reasons.

  • Financial - The investment in plant and equipment is financially significant to a company of any size. An operator benefits from monitoring process inputs and outputs. Scrutinizing the operating status of process equipment and intermediate process conditions provides valuable information that can be used to minimize negative events of many types.
  • Maintenance - Keeping a real time watch over operating characteristics of machinery can present opportunities to head off trouble before it happens. There are many warning signs that can precede equipment failure, and taking prompt remedial action requires issuance of real time warnings.
  • Safety - Industrial operations of all types tend to exhibit levels of hazard to personnel or environment ranging from minor to potentially catastrophic. The rigorous procedures employed to maintain operation within prescribed limits are enabled through the use of information about process conditions.
  • Regulatory - There can be jurisdictional requirements to monitor and report certain process characteristics. An ability to conduct the needed action from afar, without having to station personnel at a remote location, has some real benefit.
This list is not intended to be complete or definitive. There are countless ways that process operators can use real time data to enhance all facets of their operation. A challenge arises when the process or operation extends over a large area, perhaps beyond the boundaries of the primary facility. That's where telemetry serves as the means to deliver needed information to a decision making location.
Modern requirements for "knowing what is happening" increase the need for telemetry in industrial operations. 
Telemetry is getting the information you need from a remote or inaccessible location and delivering it to where it can be used for decision making. 
With the wide array of hardware offered by process measurement and control equipment suppliers, implementing the data collection and transmission has become a fairly straight forward task. Simply put, here is what you need to accomplish.

  • Measure or detect the information needed. You know how to do this. Sensors, counters, or other regularly available process measuring equipment is what is needed here.
  • Convert the measurement into a transmissible form. This will likely be accomplished by the transmission gear. The measurement devices you use should provide an output signal that is compatible with the input requirements of the selected transmission equipment.
  • Transmit the information to the receiving station (the decision making point). The device and equipment manufacturers do most of the hard work of accomplishing this task. Generally, regardless of the transmission method, the extent of the work needed to put transmission into operation involves powering up the equipment and assigning addresses or channels to identify the source of the signal.
  • Receive the signal and convert it to a form readable by the decision making portion of the system. Again, the telemetry equipment manufacturers handle the details in the design of their equipment. Implementation consists of similar steps to those of the transmission equipment.
It is recommended that the transmission method be selected first. It must accommodate any challenges presented by the distance to be covered and any obstacles that may impact the delivery of the signal to its destination. Coordinate the measuring device output signal selection with the transmission device input requirements. The receiving equipment must be capable of producing an output signal that is readable by whatever decision making or recording equipment is used.

Below is a case study illustrating how a user derived a signal from a utility plant to provide data on local power consumption.You will see how they selected and employed equipment to accomplish the four tasks outlined above.

The applications are only limited by your imagination and ingenuity. Instead of wondering about what is happening at remote locations, operators can now easily measure and deliver useful operating information across almost any distance. Share your challenges with process control specialists and develop the solutions you need.



Improved Gauge Visibility With New Product Feature From Wika

luminous glow in the dark instrument gauge
Wika Instrument gauges have optional high visibility feature.
Wika Instrument, a world class manufacturer of temperature, pressure, level, and flow instrumentation for the industrial process control field, has introduced a product innovation that allows operators to observe gauge readings in low light conditions. The product enhancement comes in two forms, called InsightTM and Insight GlowTM. I have inserted the manufacturer's published description of both options below, along with a video that demonstrates the Insight GlowTM in low light conditions.

More detailed information, along with application assistance and product configuration, is available from an experienced Wika distributor. Use your process expertise and their product application knowledge to achieve the best solutions to instrumentation challenges.

From the company:
InSightTM
The InSightTMoption includes a retro-reflective material affixed to the dial face. At daylight, the fluorescent color absorbs non visual UV light reflecting additional light and making the gauge even more visible. At low light, the pattern of the retro-reflective material also makes the dial more visible to stand out among other regular gauges.
This easy-to-view option comes in three colors: white, fluorescent yellow, and fluorescent orange. It is currently available on industrial and process type gauges (SS wetted parts) and bimetal thermometers for both dry and liquid-filled case options, in sizes from 2 ½” to 6” in diameter.
InSight GlowTM
The InSight GlowTM option uses a retro-reflective, photo-luminescent dial design that illuminates the entire front of the instrument dial for an extended amount of time when exposed to a light source for as little as 10 seconds. The dial appears bright white in darkness, fog, smoke, and fire.
Like the InSightTM option, the Glow is also available on industrial and process type gauges (SS wetted parts) and bimetal thermometers for both dry and liquid-filled case options, in sizes from 2 ½” to 6” in diameter.
Additional Factors to Consider
WIKA has developed additional options to enhance the readability of gauges. For example, a magnification window enables instruments to be read from a distance. An anti-glare window eliminates unwanted reflection of sunlight or bright indoor lighting.
For any gauge, dial size is also a key specification that can aid in readability. Accurate information allows you to operate safely and efficiently. Where possible, WIKA recommends a minimum size of four inches in diameter for process gauge dials. This enables them to be easily read from three to six feet away.

Unique Cybersecurity Challenges For Industrial Control Systems

industrial control system cybersecurity
Industrial control systems have special
cybersecurity aspects.
The International Society of Automation is offering a free white paper entitled “What Executives Need to Know About Industrial Control Systems Cybersecurity”. The article provides useful commentary and information that establishes the scope of cybersecurity in the industrial process control space and provides a basic framework for understanding how every process may be impacted by lax cybersecurity efforts. The author, Joseph Weiss, differentiates Industrial Control System (ICS) cybersecurity from that of organizational IT through a review of various attributes common to both types, including message confidentiality, integrity, time criticality, and more. Any reader’s awareness and understanding of the cybersecurity risks to their operation will be enhanced through this article. I finished reading the article wanting more on the subject, and ISA is certainly a resource for additional content.

A quote from article...
“Cyber incidents have been defined by the US National Institute of Standards and Technology (NIST) as occurrences that jeopardize the confidentiality, integrity, or availability (CIA) of an information system.”

ICS cybersecurity extends beyond preventing malicious outside intruders from gaining access. It is an important part of maintaining the overall operating integrity of industrial processes. A holistic approach is advocated to identify physical risk factors to the process and its componentry (subject of a previous blog posting), as well as vulnerabilities that may prevent exploitation by unauthorized parties. Weiss goes on to describe the role and qualifications of the ICS Cybersecurity Expert, essentially an individual that can function effectively as an IT cybersecurity tech with the added skills of an industrial control systems expert.

A synopsis of attack events is provided in the article, with the author’s conclusion that not enough is being done to secure industrial control systems and the risk exposure is substantial in terms of potential threats to personnel, environment, and economy. By providing your name and email address, you can obtain the white paper from the ISA website. Your time spent obtaining and reading the article will be well spent.

For any specific information or recommendations regarding our products and cybersecurity, do not hesitate to contact us directly. We welcome any opportunity to help our customers meet their process control challenges.



Orion Instruments Announces New Level Transmitter

Direct insertion and external mount versions of
Orion JM4 Magnetostrictive Level Transmitter
Courtesy Orion Instruments
Orion Instruments, a world class manufacturer of magnetic level indicators, level switches, and level transmitters, has released a new product for use in the industrial process measurement and control field. Their Jupiter Model JM4 magnetostrictive transmitter incorporates the company's many years of research, development, and field experience to provide a safer, simpler, and smarter transmitter for liquid level measurement and control.

The new model from Orion boasts level measurements with accuracy as high is +/-0.05" (1.27mm). The transmitter head can be rotated up to 310 degrees with an option for remote mounting. Variants are available for direct insertion or external mounting, with approvals for a number of area classifications. There are other valuable features to this series of level measurement instruments that reflect Orion's expertise in the field.

Browse the new product brochure included below. It provides illustrations of the product and its operating principle, along with dimensioned drawings and a listing of all the product options and variants. You can always obtain whatever information you need about Orion level measurement instruments from a product specialist. Share your liquid level measurement challenges and requirements with them for recommendations on the best solutions.



Cavitation Induced by a Control Valve - Demonstrated



Consider a generic industrial fluid process control operation. There are pumps, valves, and other components installed in the process lines that, due to their interior shape or their function, cause changes in the fluid motion. Let's look specifically at control valves and how their throttling operation can create conditions able to greatly impact the valve itself, as well as the overall process.

Fluid traversing a control valve can undergo an increase in velocity when passing the constriction presented by the valve trim. Exiting the trim, fluid then enters the widening area of the valve body immediately downstream with a decrease in velocity. This change in velocity corresponds to a change in the kinetic energy of the fluid molecules. In order that energy be conserved in a moving fluid stream, any increase in kinetic energy due to increased velocity will be accompanied by a complementary decrease in potential energy, usually in the form of fluid pressure. This means the fluid pressure will fall at the point of maximum constriction in the valve (the vena contracta, at the point where the trim throttles the flow) and rise again (or recover) downstream of the trim.

Here is where cavitation in control valves begins.

If the fluid being throttled is a liquid, and the pressure at the vena contracta is less than the vapor pressure of the liquid at the flowing temperature, portions of the liquid will spontaneously vaporize. This is the phenomenon of flashing. If, subsequently, the pressure of the fluid recovers to a level greater than the vapor pressure of the liquid, any flashed vapor will rapidly condense, returning to liquid. This collapse of entrained vapor is called cavitation.

Flashing, the generation of vapor bubbles within the liquid, will precede and set the stage for cavitation. When the flashed vapor bubbles condense to liquid they often do so asymmetrically, with one side of the bubble collapsing before the rest of the bubble. This has the effect of translating the kinetic energy of the bubble’s collapse into a high-speed “jet” of liquid in the direction of the asymmetrical collapse. These liquid “microjets” have been experimentally measured at speeds up to 100 meters per second (over 320 feet per second). What is more, the pressure applied to the surface of control valve components in the path of these microjets can be intense. An individual microjet can impact the valve interior surfaces in a very focused manner, delivering a theoretical pressure pulse of up to 1500 newtons per square millimeter (1.5 giga-pascals, or about 220000 PSI) in water. In an operating fluid system, this process can be continuous, and is known to be a significant cause of erosive wear on metallic surfaces in process piping, valves, pumps and instruments. As the rapid change in pressure takes place, the bubbles (voids in the liquid) collapse (implode), and the surrounding metal surfaces are repeatedly stressed by these implosions and their subsequent shock waves.

Consequences for control valves, as well as for the entire control process, vary and are often destructive. They may include:
  • Loud noise
  • Strong vibrations in the affected sections of the fluid system
  • Choked flow caused by vapor formation
  • Change of fluid properties
  • Erosion of valve components
  • Premature destruction or failure of the control valve 
  • Plant shutdown
The video provides a visual demonstration, through clear piping, of what happens inside the piping system when a valve is operated in a manner that causes substantial cavitation.

The solution lies in minimizing the potential for cavitation to occur through proper valve selection and sizing, along with coordinating operating characteristics of pressure drop inducing components with the total system performance. One valve manufacturer's recommendations are summed up in four basic approaches.

  • Avoidance of cavitation through proper valve selection. Use a valve with a rated liquid pressure recovery factor greater than that required for the application. Some applications may be suitable for the use of an orifice plate downstream of the valve.
  • Cavitation Tolerant Components capable of withstanding limited amounts of cavitation without excessive wear. Increased flow noise is likely to accompany this route.
  • Prevention of cavitation through the use of valve trim design that reduces pressure in several steps, avoiding excessive flashing. These valves can be expensive, but their effectiveness makes them an alternative worth considering.
  • Containment of the harmful effects of limited to moderate cavitation through trim designs that eliminate contact of the fluid with metal surfaces which are more susceptible to damage.

Share your requirements and application challenges with a valve specialist and gain insight through their recommendations. Combining your process knowledge with their product application expertise will yield a great solution.

Knowledge Base and Selection Guide For Magnetic Level Indicators

Orion Instruments Magnetic Level Indicators
Magnetic Level Indicators
Courtesy Orion Instruments
Industrial process control frequently involves the storage of liquid in vessels or tanks. Continuous and accurate indication of liquid level within the tank is an essential data point for safety and process management. While there are a number of methods and instrument types utilized to provide tank level measurement, the instrument of choice is often a magnetic level indicator, also referred to as a magnetic level gauge. Its use for providing level indication has a number of positive attributes:
  • Construction that is resistant to breakage.
  • Measuring indicators, switches, and transmitters mounted externally, without contacting the medium being measured.
  • Maintenance free operation. No regular cleaning needed.
  • Readable level indication from greater distance than glass sight gauges.
  • Magnetic level indicators can accommodate greater fluid level ranges without the need for multiple instruments.
Orion Instruments, a Magnetrol company and industry leader, has produced a comprehensive guide to magnetic level gauges, switches, transmitters, and related products. It delivers experts and newcomers an understandable and clear description of the technology and principals of operation behind magnetic level gauges and instruments. The guide also assists the reader in properly specifying and selecting the best instrument configuration for an application. A table of contents at the front of the document helps readers to quickly find the information they need.

Take a couple minutes to roll through the document and you are likely to find new and useful application tips and product information. Any questions about magnetic level indicators or your process measurement and control applications can be clearly addressed by a product specialist.



Filtration Yields Returns By Protecting Fluid Process Lines and Equipment

Dual basket strainer with changeover valve
Duplex Basket Strainer With Diverter Valve
Courtesy Eaton Filtration
Most people think of "industrial" equipment as super heavy duty, virtually indestructible. Those of us responsible for operating and maintaining industrial process equipment recognize that is not the case. Even the most formidable appearing equipment can be crippled if not protected from the insidious effects of particulates.

There are numerous strategies for mediating the impact of particulates on industrial fluid process equipment and systems. The best solutions will be customized for each process, with consideration given to:
  • Maximum particle diameter threshold: At some level, particulates may be small enough to preclude damage to the system. Above the threshold level, removal of the particles brings some benefit to process operation.
  • Pressure drop associated with any mitigation techniques: Assuming that mitigation will involve the addition of components to the fluid system, minimizing the added pressure drop is advantageous.
  • Overall volume of particulate matter to be removed: Most often, mitigation equipment traps and retains particulate matter. The retaining capacity of the unit must match the particulate production rate of the process. Be mindful that certain events, such as routine maintenance or cleaning of process equipment, may produce surges of particulates in some types of systems.
  • Location of the filtration equipment: Filtration units must be placed in the process flow upstream of the equipment or system portion to be protected. An additional consideration is a provision for maintenance through placement in a convenient, easily accessible location.
  • Filtration equipment materials of construction: The filtration gear must be fabricated of materials compatible with the process media.
I have provided a data sheet below with cutaway illustrations and detailed performance data for one type of filtration unit. This particular equipment is manufactured by the filtration division of Eaton and features a duplex strainer basket arrangement with a diverter valve. The process fluid flows through one strainer, with the other clean and ready to be brought on line when the active basket becomes clogged. When the active basket becomes clogged and pressure drop excessive, the operator moves a lever to divert the flow to the second basket, sealing off the now clogged basket area so that it can be opened and cleaned. This design provides for uninterrupted process operation.

Browse the provided data sheet. You will likely pick up something you did not already know, or get a quick refresh of your technical knowledge. The duplex basket strainer is one type in a wide variety of filtration products available for every conceivable process application. Share your challenges with a product specialist. Combining your process knowledge and experience with their thorough product application expertise will generate great solutions.



Fluid Flow Control - Slurries, Entrained and Suspended Solids

Slurry, suspended solids in fluid, toxic fluid
Industrial process control can be confronted with
hazardous, corrosive, or other fluids containing
suspended solids.
Industrial process control can involve the manufacture, storage, or transport of almost any imaginable fluid. Media can range from water to concrete, hydrogen gas to steam, and anything in between or outside of those boundaries. Valves are the favored control device for regulating fluid flow and they are available in uncountable varieties, each with particular aspects making them more of less suitable for a particular media or application.

Most industrial valves consist of a body, a stem, and some form of flow obstruction which is located within the media flow path. Operation of the stem repositions the obstruction to allow or block the flow. All of these valve types have a defined sealing surface where the obstruction contacts the body. They also have additional seals where the stem penetrates the body. These design features, while providing certain functions and application advantages, also add to the operational complexity and parts count for the valve.

There is a valve type with a simple operating principle that provides superior performance when the application involves certain media characteristics. It is called a pinch valve, and here is where it excels.

  • Resistance to abrasion and corrosion from slurries or fluids containing suspended solids and the ability to provide tight shutoff around particulates
  • Media and environmental temperature range -40 deg F to +300 deg F
  • Low to moderate operating pressure
  • Flow regulating capability and tight shutoff
  • Non clogging
  • Straight through full bore design with minimal flow resistance
  • Isolation of the valve body and workings from the media
  • Low parts count, low maintenance, easy repair/replacement
cutaway view of manually operated industrial pinch valve
Cutaway view of manually
operated industrial pinch valve
A pinch valve consists of a sleeve, through which fluid flows, and a means to compress or "pinch" the sleeve to reduce the open area inside the sleeve. The sleeves are most often fabricated from elastomers with various types of fiber reinforcement. Closure is commonly achieved through movement of one or two bars to squeeze the sleeve, providing throttling or positive closure. The flexibility of the sleeve material allows for tight shutoff, even with fluids containing suspended solids. The valves can be coupled with electric or pneumatic actuators and are available with industry standard connections. One valve variant has a body that can be pressurized to close the sleeve, without the need for a separate actuator. Pinch valves are available with and without an enclosing body.

You should be familiar with the capabilities and forms of this unique valve type. When confronted with certain application challenges, a pinch valve can be a superior solution. I included a product line data sheet from one manufacturer, General Rubber Corporation, so you can see all the different variants that are available. You can get even more information, or start a conversation about any of your process control challenges, by contacting a product specialist.